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FOREWORD

This report contains the resulis of the work performed on a
study of "Fabrication and Experimentel Eveluation of Common
Domes Having Waffle-Like Stiffening" initiated under NASA
Contract No. NAS 8-11542., The work is administered under
the direction of the Propulsion and Vehicle Englneering Di-
vision with Mr. Norman €. Schlemmer (R-PVE-SS) acting es
Principal Representative.

The Douglas program was conducted under the direction of
Mr. H. H. Dixon, Chief, Structures Branch, Advence Space Tech-
nology with Mr. R. H. Christensen acting as Study Director.

Mr. R. R. Meyer was the principal investigator of the program
and was assisted in the theoretical and analytical phases of
the program by Mr. R. J. Bellinfante.

The authors wish to acknowledge the assistance of Mr. H. P.
Adem and Mr. P. A. King of the Experimental Stress Analysis
Isboratory for thelr work in the fabrication and testing of
the plastic models in the experimental program. Messrs. R. T.
Pfaffenberger and T. J. Murphy were responsible for the fab-
rication and test of the aluminum waffle stiffened dome.
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SUMMARY

minimum weight shape and stiffening configuration for doubly curved
shells subjected to external buckling pressures.

Monocoque shapes considered were spherical, ellipsoidal and torispher-
ical heving clamped boundary conditions.

- The stiffening configurations considered were meridional, circumfer-
ential, combined meridional and circumferential, square-grid and
geodesic stiffened domes.

The theory was supported in all phases by experimental tests on plastic
models and was concluded by a large scale aluminum test on the best
stiffened configuration. It was concluded from this study that:

The minimum weight dome shape for a condition of external pressure is
- a spherical cap with a half-opening angle of 6 = 60°,

The experimental data for the buckling of monocoque spherical domes
shows excellent correlation with the theory of Huang.

The geodesic rib-stiffened dome is the most favorsble reinforcement
arrangement for spherical domes subjected to external pressure.

The geodesic rib-stiffened dame is approximately 30 - 40% heavier than
" an optimum honeycomb sandwich dome for an external loading condition.
However, other loading conditions should be investigated before a
final strength to weight comparison can be made for common dome
applications,

e
—
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CHAPTER I - PROBLEM DISCUSSION AND RESULTS OF INVESTIGATION

INTRODUCTION

The objective of this study was to determine the minimum weight shape
and rib stiffening pattern of & common bulkhead subjected to external
pressure separating two tandem cryogenlc tanks of a space vehicle. The
‘'rib stiffened reinforcement concept is a potential replacement candidate
for sandwich construction of cormon domes. The study was prompted by
the difficulties in febrication and inspection techniques currently ex-
perienced with sandwich construction.

This effort was divided into four phases. In Phase I, analytical tech-
niques were used to select the least weight monocogue dome shape for
subsequent reinforcement studies. Phase II involved corroborstions of
the Thase I analysis by tests on small scale plastic monocoque spher-
ical, ellipsoidal, and torisphere shapes. Phase IIT consisted of anal-
ysls and tests of stiffened domes under external pressure to optimize
the distribution of the reinforcing members on the shell shape selected
from Phase I and II studies. Phase IV was a test of & larger aluminum
- dome fabricated in the best stiffening configuration to verify the
plastic dome results.

PHASE I - SHAPE OPTIMIZATTON

MONOCOQUE HISTORY

Prior dome buckling investigations were confined to monocoque construc-
tion. The first attempt was made by R. Zoelly (reference 1) in a ais-
sertation at Zurich in 1915. From the prebuckled equilibrium deflections
of & complete sphere, he assumed a small axisymmetric perturbation shape
and determined the load which would maintain either of the two possible
equilibrium configurations. Ieter in 1932, Van der Neut (reference 2)
gave a more general solution, considering also unsymmetrical buckling.
Unfortunately, tests of domes gave critical pressures which were far be-
low the predicted values. Various theories were advanced to explain

the discrepancy. In 1934, Donnell (reference 3) introduced the concept
of imperfection in the geometry as a possible cause for discrepanciles
between test and theory of cylindrical shells. An imperfection parameter
was inserted into the equations which resulted in lowered critical pres-
sures. Unfortunately, actual physical measurements of the imperfection
rarameter could not be made prior to a test.

Then in 1942 Von Karmen and Tsien (reference 4) investigated the problem
using a large deflection set of equations for a shallow spherical dome
and predicted an upper and lower equilibrium load for the dome under axi-
symietric deformation. ILittle further progress was made until 1960, when
Grigolyuk (reference 5) succeeded in obtaining an unsymmetricsl solution
to the large deflection shallow dome equation. His solution, however,



wag theoretical only, and no actual computations were carried out. The
final step was made in 1963 by Huang (reference T), who obtained numberical
results for a deformation process starting with a central dimple, fol-
lowed by a circle of circumferential dimples occurring at a pressure
roughly 80% of the value given by Zoelly for a complete sphere. These re-
sults were confirmed by Parmerter (reference 6) a year later, in 196k.

The exlsting experimental buckling date before the initiation of this
study, as depicted in Figure 1.1 shows a lack of consistency between var-
ious investigators which complicates any attempted correlation with
theoretlcal predictions. The reason for this large scattering of test
date may be attributed to the significant influencing factors of imper-
fections, boundary conditions, residual and prebuckling bending effects
(non-linear theory). Where:

1. Imperfections of geometry consist of deviations of the shell
midsurface from that of a perfect sphere and varistion in
thickness. Of these two, the most serious is midsurfece
spherical deviations of the flat spot type covering regions
of dimple size or larger. :

2. Boundary conditions which lack rotational symmetry cause edge
disturbances which propagate deeply into the shell interior
before demping out. Regions of dimple size are stressed to
values considerably sbove the average pR/Et membrane stresses
assumed in theory and precipitate premature failure.

3. Residual stresses can effect stability in two ways. PMirst,
by causing a release in residual strain energy occasioned by
the buckling change of shape, and secondly by causing over-
stressed regions to become prematurely vlastic.

' Prebuckled bending effects influence the local geometric
radii of curvature of the shell in a similar fashion to that
of local flat spots with an accompanying drop in the eritical
pressure. The tude of prebuckled bending is greater for
very thin shells (generally those with large R/t ratios).
This aspect is incorporated in the large deformation theory,
but not in the earlier "classical" theory of Zoelly.

As an example of the effects of boundary conditions, Litle, at MIT,
(reference 26) fabricated dome specimens with hat-like brims which were
clamped to the testing fixture. Since the material was highly elastic,
the domes could be retested with the brim removed, and the edge cemented
into & ring. The second set of test pressures were 100% higher than the
first. Any efforts to correlate such tests with imperfection theory
would be misleading. It could be equally misleading, when residual
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stresses are high, to compare domes made by essentially different pro-
cesses, since the magnitude and distribution of residual stresses de-
pend upon the fabrication technique.

RESULTS OF OPTIMIZATION ANALYSIS

The shape 1s considered to be optimized for the least weight dome con-
figuration to support e gilven external pressure. Since the dome di-
vides two common tandem tanks, no cylindrical materisl is considered in
the weight comparison. The shapes to be investigated will comsist of
constant thickness ellipsoids, spherical ceps, torispheres and zero-
hoop-stress domes. The buckling criteria willébe taken as a modified
form of the Zoelly equation, i.e., p = 2CE (t)“ where C is an experi-
mentally determined coefficient, and R is the maximum radius of cur-
vature of the dome according to the theory of local stability developed
by Mushtari and Gelimov, (reference 8).

The optimization analysis is effected by computing a weight index ob-
tained by factoring out the dimensions, the buckling coefficient, and
the dome density from the dome weight vs. the a/b (vase radius to
height) ratio of the dome for the shapes of interest. The results of
this weight indexing are shown in Figure 1.2. From the figure, the
minimm weight is obtaiggg for spherical cap with an a/b =\/3, at a

half-opening angle © =

Although it may sppear that a dome shape which frames into a cylinder

at an angle will require & large ring to accomodate the hoop thrust from
the dome at the juncture with the cylinder, a more careful analysis
matching the radial displacements of ring and dome shows that a consi-
derable portion of the hoop load is taken by the dome itself. For this
reason, a small ring is adequate. See Chapter II, Figure 2.k,

PHASE II - TESTS TO CONFIRM SHAPE OPTIMIZATION

MATERIAL PROFERTY TESTS

To establish basic material properties of the polyvinyl chloride plastic
material used in making experimentel models, the following tests were
made at the start of the program:

(a) Elastic Modulus. Standard tensile specimens were fabricated
from sheet material supplied by the manufacturer to obtain
values in both directions of the sheet, from different areas
of the sheet, and different thickness of sheets. The results
give an average Young's Modulus of 465,000 psi with a maximum
deviation from the mean of 3.5%. Figures 5.1 snd 5.2 in
Chapter V show the variation in the modulus and a typical
stress-strain curve from the experimental results.
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(b) Poisson's Ratio. Several tests established Poisson's
ratio to be 0.37 with very little scatter.

(ec) Creep. Constant loads were maintained for several minutes
at stress levels below the proportional limit, with no
detectible creep.

MODEL FABRICATION

The plastic sheets were pressure formed into a metal mold at 2h0°F,
cooled, and finish machined in the mold. They were then cemented into
a heavy plastic ring. The physical structure of the plastic is analo-
gous to that of a sponge saturated with water and frozen. Heating melts
the water so that the sponge may be formed. The water is then frozen
and the resulting new shape is virtually free of residual stresses.

This material and fabrication technique minimized the major factors con-
tributing to the test scatter and the reduction of the buckling co-
efficient.

TEST DESCRIPTION

A wooden block rests between the dome's inner surface and the base of
the test fixture with a gap of approximately 1/8" separating them. The
purpose of the block’'is to prevent complete collapse of the specimen

80 that it may be used for further testing. A vacuum pump evacustes

the air beneath the dome thus subjects the dome to an equivalent external
differential pressure. The plungers of six transformer displacement
transducers are aligned normal to the surface along a dome meridian to
measure normal displacement. The output of six pressure gages are re-
corded with each corresponding transducer and plotted automatically on an
X-Y recorder to give pressure vs. displacement for each of the six posi-
tions. At the instant of buckling, as recorded on the graphs, the six
pressure readings are averaged to obtain the critical pressure.

INDIVIDUAL SHAPES AND RESULTS

(2) Spherical shapes tested had base radii/height ratios of 1.00,
2.00, 3.33 and 4.78 with a eonstant base diameter of 16 inches.
The buckling coefficients were C = 0.48; 0.50; 0.50; and 0.50
respectively. The buckling patterns on the models are shown
in Figure 1.3.

These buckling coefficients are plotted in Figure 1.4t and demon-
strate that C is independent of the R/t and of the half-opening
angle of the dome in this range. These tests also show excellent
correlation with the shallow shell, clamped edge buckling theory
of Huang (reference 7 extrapolated to include deep domes. It is
the authors opinion that the large nunber of dimples appearing on
the deep domes are the reason for extrapolated correlation since
& shallow shell slice from a deep dome demonstrates the typical
deformation pattern.



(b) Ellipsoidal shapes tested had base radii/height ratios of 2.00
and 3.33. The buckling coefficients, based upon the maximum
radius of curvature theory of Mushtari-Galimov (reference 8),
were C = 0.5k and 0.49. On the first dome, & single dimple
appeared at the apex and was followed by & ring of sausage
shaped dimples surrounding it. On the second dome, two adja-
cent, equal size, circular dimples arreared, with their common
point of tangency at the apex. (Figure 1.35.

(¢) A single torisphere with a spherical radius of 11.50 in. and
& knuckle radius of 1.7l in. was tested and gave & buckling
coefficient C = 0.33, based upon the spherical radius. This
specimen, with a reduced buckling coefficient, had a single
circle of dimples girdling the junction between the spherical
cap and the toroidal base, in the vicinity where discontinuity
stresses were high (Figure 1.3). It appears that the discon-
tinuity geometry has 1o be included in buckling correlation
of such domes, and that, in general, they will be less efficient
than the spherical or ellipsoideal shapes based upon the shape
optimlzation anaysis showm in Figure 1l.2.

The zero-hoop stress dome was not tested in this program be-
cause of its apparent inefficiency based upon the analytical
investigation (Figure 1.2) and the need to reduce the scope

of experimentation in this program. The results of these tests
confirm the optimum shape analysis, showing the lightest weight
monocoque dome shape to be the spherical cap with an a/b =, 3.
The reduced buckling coefficient obtained for the torisphere will
shif't the curve shown in Figure 1.2 relatively higher, and make
it less competitive than anticipated. The results of the four
monocoque spherical dome tests plotted on the theoretical buck-
ling curve of Huang (Figure 1.&), together with the experimental
results of Permerter (reference 6) shows the scatter of the
Parmerter tests compared with the consistency of the present
results. Parmerter's copper specimens had some residual stresses
~and surface roughness which probably accounts for the scatter.
Table I shows the summary of the experimental results for the
monocoque domes tested in this progrem.

Considering the mass of conflicting data hitherto existing relat-
ing to monocoque dome buckling, it may be said that & remarkable
correlation of test and theory has finally been achieved for
spherical domes under external pressure.

PHASE III - STIFFENING OPTIMIZATION
Stiffening History

Since the buckling phenomena is considered as a bifurcation of equilibrium
mechanism involves a transfer of strain energy from the membrane condition
to the bending condition, it was early appreciated that a redistribution of
material to increase the bending rigidity of the shell with no increase in



weight should increase the buckling pressure.

The first analysis to include this effect was the stiffened cylinder
dissertation of D, D. Dschou in 1935 (Reference 1k), Subsequent
analysis and testing was confined to shapes of single curvature
(cylinders and cones). The major reason for this emphasis was the use
of such shapes in aircraft construction.

With the coming of age of the space industry, attention has now been
focused upon shapes of double curvature forming end closures of large
pressure vessels, Until very recently, the only attack on this problem
was experimental., In Germany, Ebner; Kloppel and Jungbluth; and Kloppel
and Roos, (References 16, 12, 15 respectively) tested models stiffened
by meridional and meridional-circumferential ribs, Semi-empirical
enalysis was developed for flat meridian-stiffened sphericael domes by
treating them as arches subjected to triangular loading. Stiffened
models of the circumferential, meridian, and waffle-type were also
tested by Krenzke at David-Taylor Model Basin., (Reference 17)

Stiffening Theory

It hes been the custom to stiffen spherical domes by placing ribs in
the meridian and/or circumferential direction in order to achieve an
improvement in the structural weight efficiency compared to monocoque
domes, These stiffening configurations suffer from the defect that
all directions on a sphere are principal directions and no orientation
of the pattern can be assigned. Aware of these possible drawbacks,
semi-empirical analyses are developed in this study for meridian and
circumferential stiffening, and appropriate optimization procedures
are applied., Chapter III contains the details of the analytical
investigation. Since a spherical cap, which is the minimum weight
shape for monocoque construction, has homogeneous, isotropic, geome-
trical properties, the major analysis was directed towards obtaining
a stiffening concept that is homogeneous and isotropic over the shell
mid-surface, A geodesic stiffening configuration, with equilateral
triangular grids, meets this criteria of homogeneity and asotropy if
the grid spacing is close and the elastic properties are independent
of the grid orientation. The increase in efficiency inherent in this
geodesic concept is supported by the experimental tests conducted in
this study.

A brief outline of the more important aspects of the geodesic
stiffening snalyses is discussed in the proceeding paragraphs. The
detailed analysis is presented in Chapter IV,

Geodesic Stiffening

General Instebility Pressure - In terms of non-dimensional
ratios, the general instebility pressure is expressed as
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In terms of the Zoelly equation for the buckling of a monocogue
spherical shell
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Panel Instability - It is assumed that there is no coupling
between panel end general instability and that the panels may be
conservatively approximated as flat with hinged edges. The panel
instability pressure is then:

2 2
p= 2B @+l +E]

Rib Crippling - Rib crippling assumes no coupling with either
panel or general instability, ignores rib curvature and assumes the
ribs to be hinge connected to both the panels end to the rib inter-
sections, The pressure for rib crippling, on this basis is:

2
_c bk
b= CE® (140
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Optimum Design - If p,, py, and pPo are continuous, sfrictly
increasing functions of the distributions of material to general, panel

and rib crippling modes of failure, it can be shown that the least
weight solution for a given pressure occurs when

pcr = po = pl = p2

Equating these values, and successively eliminating unknowns, yields
the solution:

e T
az(h+a)2\/z-2-(l+a) [034- 0324'-—23]

er _ o

E L 2[-3+ v9 + (L + o) gla) ]2

where

C. V¥ 2
(a)=(_e_) (1+a)” 1tk
€ € a a

(o]

C.e c. §. €2
C - -l—’ C= 1
3 02 b

end € is a grid size parameter given by the relation

h2 = ¢ Rt

For the panel to be approximated as a plate, it is necessary that

€ < k0

By assuming values for € and o, p/E may be determined and &, y are
then given by the relations

=3+ 9 + (L + a) gla)

L + o

1/2
[3a(1 + 6)2 + (1 + a)(1 + a 62)]

<
#



The ratio of stiffened weight/monocoque weight, is:

o= - 1*3a

%

t /_;

if the same value of the general instability coefficient, C. = 2C is

assumed for both monocogue and geodesic stiffened constructions. By
holding p/E constant and varying e in the previous equations, a
minimum weight construction may be found.

Evaluation of Stiffened Results - The assessment of the
quality of a monocoque dome is made by observing how closely the
general instability coefficient C comes to the upper limit value,

The larger C is, the lighter weight is the dome for a given pressure,

In stiffened domes, one may compute two coefficients of merit C and
c* from the equivalent weight thickness or effective buckling thick-
ness of the dome.

- - . T.°
P=2CE('§) ’

* 2
p'=2c"E ()

where t = t(1 + o) is the smeared out thickness, which may be computed

from the above formula or from the actual*weighed dome , and t* = ¢ N
is the effective thickness. Apparently C should have the same upper
limit value as the monocoque C found from the previously determined
experimental results.

That is
c* == 28 = 0.50
vV 3(1 - v2) 1
for v =

3

For equal weight of monocoque and stiffened domes, one has t = t
giving

-2
= T
) ZCE(R)

el
"
aja

2
t
2CE(R)

n
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BUCKLING PRESS. . -
=772 P81

#4-S SPHERICAL DOME

{a/b = 3.33) (a/b = 4.78)

BUCKLING PRESS.
= 5.30 PSI

BUCKLING PRESS.
=3.87 PSI

FIGURE 1.3 MONOCOQUE DOME CONFIGURATIONS
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CONFIGURATION a= 8.0 IN. (CONSTANT) a/b Ruax R, tag | Pwaxq | PrPSL c Wp
SPHERICAL — #1-$ 1.0 8.0 - 0277 29 5.38 48 11.14
SPHERICAL — #2-$ /‘ <1 20 10.0 N 0409 25 7.12 50 10.20

b

. i
SPHERICAL -#3s | = /RMAX 3.33 145 _ 0490 29 5.30 50 10.70
SPHERICAL — #4-$ 4.78 2.0 _ 0580 345 3.87 50 12,60
ELLIPSOIDAL — #5-E u 20 | 160 - 0368 435 2,52 54 9.8

b

' Rmax —
ELLIPSOIDAL - #6-E | j—a—] 3.33 2%.6 _ 0461 578 1.37 49 10.8
TORISPHERICAL - #7-T / > 'b_ 2.0 1.5 1711 0401 287 3.76 33 10.8

1 -n_1l

/Ry
I-‘-Ja»——-VRMAX

TABLE 1.1 C=_p_(RMAX)2

SUMMARY OF EXPERIMENTAL RESULTS
FOR MONOCOQUE DOMES UNDER EXTERNAL PRESSURE
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FIGURE 1.4 BUCKLING OF MONOCOQUE SPHERICAL CAPS

COMPARISON OF TESTS WITH HUANG'S THEORY



1-G GEODESIC STIFFENING 2-G GEODESIC STIFFENING
(a/b=4.78) ¢/c=150 (a/b=4.78)  ©T/c=1.60
BUCKLING PRESSURE = 5.87 P.S.I. BUCKLING PRESSURE = 6.54 P.S.1.

3-G GEODESIC STIFFENING : -G SQUARE-GRID STIFFENING

(a/b=4.78) ¢/c=2.27 (a/b=4.78) C/c=158
BUCKLING PRESSURE = 3.96 P.S.\. BUCKLING PRESSURE = 9.48 P.S.1.

FIGURE 1.5 STIFFENED DOME CONFIGURATIONS

16
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1-m

CIRCUMFERENTIAL STIFFENED
(a/b=2.0)  ©/c=.92
BUCKLING PRESSURE = 4.09 P.S.1.

Imc  CIRCUMFERENTIAL & MERIDIONAL STIFFENED
(a/b=4.78) t/c= .82

BUCKLING PRESSURE = 1.53 P.S.I

MERIDIONALLY STIFFENED
(a/b=4.78) T/c=.88
BUCKLING PRESSURE = 1.41 P.S.I.

FIGURE 1.5 STIFFENED DOME CONFIGURATIONS

17



2-m

MERIDIONALLY STIFFENED
(a/b=4.78)  T/c=1.1
BUCKLING=2.09 P.S.I. -

3-m  MERIDIONALLY STIFFENED
(a/b=4.78) t/c=138

BUCKLING PRESSURE = 2.87 P.S.1.

4m  MERIDIONALLY STIFFENED
(a/b=1478) t/c= 1.24

BUCKLING PRESSURE = 2.87 P.S.1.

FIGURE 1.5 STIFFENED DOME CONFIGURATIONS

18
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STIFFENING . |roor -

CONFIGURATION CONSTANT a = 8 IN, i R T I O 1 L G REMARKS
GEODESIC - 1-G 2 | 157 | 230 | 011 | 0474 507 | 0580 | 150 | PENERAL INSTABILITY
GEODESIC - 2-G 0 | 160 | 226 | 0239 | 0479 650 | 059z | 160 [ JENERAL INSTABILITY

|
GEODESIC-3-G 2 | 125 | 205 | 0183 | 0296 396 | 037 | 227 | foCRAL INSTABILITY
3
PRIMARY FAILURE BY
CIRCUMFERENTIAL--c| £ 10 VARYING | 0260 | 10 | 409 | 0300 | 92
i RIB INSTABILITY
t PANEL INSTABILITY
MERIDIONAL - 1-m s —; 20 25 | .0191].0349 | 6 LAL 0371 | 88 |y iee
MERDIONAL 20 | TN, T — 20 30 | oo | om9 |2 | 209 | oane | iz | R8 NEEABILITY
b
MERIDIONAL — 3 30| om RIB INSTABILITY
" | BT 20 ¢ [ b 1039 26 | 287 |.0624 | 138 | FAILURE
el 2 | .08 RIB INSTABILITY
b 2 30 [ 0239 | 0272 | 38 | 169 | 0343 | 104 | FAILURE
-t d
MERIDIONAL AND s _i. 615 PRIMARY FAILURE BY
CIRCUMF ERENTIAL- Lo i g'l_r‘ 2 25 | oon | o | o || 153 | 001 | sz | CIRCUMFERENTIAL Rig
AT INSTABILITY
. a b—
SQUARE-GRID - 156 | 733 SO o0 | i | a0 | oo | s ous | o2 | Lsg | PRIVARY FAILURE BY
¢ ARRREEETI el I A8 1 012 {158 | GENERAL INSTABILITY
p—elie
TABLE 1.2

SUMMARY OF EXPERIMENTAL RESULTS OF STIFFENED

SPHERICAL CAPS UNDER UNIFORM EXTERNAL PRESSURE



If C is taken as its upper limit vealue C = 0,50, then

C
a ——

0.50

ol

for en increase of strength to weight for the stiffened dome.

Fabrication of Stiffened Domes

The shells of the stiffened dome configurations were fabricated using
the same technique as the monocoque dome configurations. The ribs

were cut from various sheet material thicknesses and bonded on the
concave surface of the shell., The stiffening configurations fabricated
were:

Meridional Stiffened

Circumferential Stiffened

Combined Meridional and Circumferential Stiffened
Square-Grid Stiffened

Geodesic Stiffened

Stiffened Model Test Results - Room Temperature

The detailed geometry and test results of the stiffened dome configu-
rations for the room temperature condition are tabulated in Table 1.2
Figure 1.5 depicts the resulting buckle patterns of stiffened plastic
domes at the falling pressures indicated in the figure.

The highest strength to weight ratio was achieved using a geodesic
stiffening pattern as shown in the summary teble of the experimental
results. It was also indicated that the circumferential and the com-
bined meridional-circumferential stiffening arrangement was less ef-
ficient than that of the meridionally stiffened dome arrangement.

The experimental values of C¥ for the three geodesic domes and the
square-grid dome were less than 0.50 achieved for the monocoque domes.
The reasons for not achleving the upper 1limit for C* are not clear.
The cause could be due to rib fabrication stresses, edge effects and
imperfect grid mapping on the spherical surface.

Stiffened Model Test Results - Thermml Gradient

A combined loading condition of thermal stress and external pressure

was used to test a geodesic and a square-grid stiffened dome to assess
the influence of thermel stresses upon the buckling pressure. In both
tests the applied thermasl gradient produced a higher buckling pressure
than was previously recorded for the room temperature condition. This
increase in the buckling pressure was attributed to the difference be-
tween the shell and the support ring which introduced a relieving tensile
load in the shell.



Phase IV - Metal Dome Febrication end Test Results

An aluminum dome with a half-opening angle of @ = 60° and a spherical
radius of R = 27.3 inches, with a geodesic stiffening pattern, was
fabricated and tested to verlify the plastic dome results.

The spherical shell was spun using 2014 - T6 aluminum materiel and the

geodesic rib pattern was formed by a hand routing procedure.

Test Description

The finlshed dome was mounted in & heavy steel base ring with a deep
trough machined in the ring. The dome was seated into this trough
and then filled with Cero-bend. Pressure was applied on the convex
surface uslng oll as the pressurizing medium, and continuous instru-
mentation records were teken up to failure.

Test Results

Failure of the dome occurred at 62.2 psi. The buckling coefficient
for this geodeslc dome at the failing pressure was calculated to be
C = 0.26. It is suspected that this buckling coefficient was less
than that obtained for the plastic dome specimens (C = .35) because
of the high residual and pressure stresses causing plastic behavior
of the material.

2]
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CONCLUSIONS

The experimental and enalytical investigation concluded shows that.a
spherical cap with a half-opening angle § = 60°, with a geodesic waffle
arrangement, results in the minimum weight shape and rib stiffening
arrangement, However, since this study was initiated to develop a
stiffened dome that would be a possible replacement candidate for honey=-
camb sandwich common domes in tandem propellant tanks of large space
vehicles, a comparison between these two dome concepts is necessary.,

Figure 1.6 is an estimate of the weight of a near optimum geodesic dome
construction compared to that of monocoque and honeycomb dome construce
tions based upon a spherical radius R = 100 inches and 201L-16 material.,
The general instebility coefficient C = .50 is assumed constant for this
particular example, but in general will be a variable dependent upon the
fabrication details, The honeycomb design curve includes a realistic
bond weight of 3 1b/ft? ’ dictated by previous febrication experience,
and a core density of 4 1b/ft3, -

Since a common dome in space vehicles serves the dual purpose of with-
standing the resulting differential pressure and temperature between the
propellants, the insulation requirement is included in the weight
estimation shown in the figure, This is shown by the solid line for the
monocoque and geodesic dome construction. The honeycomb core inherently
provides a good thermal barrier, therefore, no weight penalty is asso-
ciated with this design concept. An example of typical geometrics for
the three constructions is shown in the figure for an assumed external
pressure condition of P = 30 psi.

Before drawing general conclusions of comparative strength to weight
ratios between rib stiffened and alternate monocoque and composite dome
constructions, one must be aware of the other loading conditions, and
varying influence of the fabrication variables upon the’ general insta-
bility coefficient,

For example, in honeycomb construction a large differential temperature
between the inner and outer face sheets produce high thermal stresses
that may have a significant effect upon the overall weight end geometric
proportion. On the other hand, in stiffened and monocoque construction
these thermal stresses are of minor importance and in general do not
have a significant effect upon the weight. Another example of loading
influencing the finel design weight is that due to an internal pressure
condition. Often in the design of common domes the internal pressure
may be greater than the external pressure condition, thus resulting in
high tensile stress on the bulkhead. From Figure 1.6, assuming p = 30
psi, it may be shown that if Pj,¢, 2 3P that the comparative weight
between the honeycomb and geodesic stlffened construction are approxi-
mately equal,
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CHAPTER II - MONOCOQUE SHAPE OPTIMIZATION
SPHERICAL CAP

When a hemisphere or an ellipsoid joins a cylinder, due to continuity
of the tangents at the Jjuncture, no out-of-balance membrane loads
exist at the Joint. For a spherical cap, however, the discontinuity
in the tangent causes transverse shears and bending moments at the
Joining point (see Figure 2.1) which results in local bending and hoop
forces, When the dome is worked in tension, a thickening of material
around the joint, frequently in the form of a ring, is required to
resist buckling, However, when the dome is sized for compressive
loads but local tensile edge effects occur, ring requirements will
depend upon the out-of-balance forces and compatible displacements
between the cylinder, ring and dome for the allowable tensile stress,
In bulkheads separating two tanks where both pressure loadings may
occur, this effect should be considered.,

e

Figure 2.1 -~ EDGE FORCES ON SPHERICAL CAP



The surface area of the spherical cap ié,

9
A=/ 2unRsgingR d ¢
(o]
_ 2
A=27R (1- cos¢)

the spherical cap weight is

W

Since the allowsble compressive stress is,

From figure 2.1

‘R =

sin¢

Substituting into the weight equation gives

3 /P 1~ cosé

pAt=21m0p i (1 - cos¢) t

W=2npa
2CE sin3¢
— 3 / P
W=21p a EEE- ]
where
6 = l-cos¢
sin3¢

25



the term ¢ is evaluated in table 2.1 for 0° < ¢ g 90°

Table 2.1

[ s:’]t..mp Sii'3¢ cos ¢ 1l - cosé o(¢)
10° 5.6 190.5 .98k .016 3.05
20° 2.92 24,9 .9kl .059 1. 470
30° 2.00 8.0 . 866 .13k 1.072
40° 1.553 3.75  .T66 .23k 0.877
50° 1.304 2.22  .6L3 .357 0.831
60° 1,153 1.535  .500 .500 0.766
70° 1.062 1.198 .3k2 658 0.789
80° 1.016 1.048 L1737 .8263 0,867
90° 1.000 1.00 O 1.000 1.000

From the table,the minimum value of ¢ occurs at ¢ = 60°,

Proof that ¢ = 60° gives a minimum value of ¢ is shown below,.
.3 X . 2
o' = Sin’¢ (sing) - (1 - coss) 3 sin“¢ cos¢ o
sin6¢
and since
¢ #0 , sing # 0
sin3¢ - 3 cos¢ (1 - cos¢g) =0 ,
giving 2
2 cos ¢ = 3 cosp+1=0 ,
C°S¢ = l%—ln ’ ¢ = 600 ’
since V

¢6#0



Thrust Ring of Spherical Cap

! Ring

ja— a = R sing

Due to membrane loading, the spherical cap will be in compression while
the ring will be in tension. Assuming that the rotational resistance

of the ring is small compared to its hoop rigidity, the following forces
will exist at the Juncture between the shell and the ring,

Shell Ring

27
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Shell Sl!

Due to the pressure,

=y =-&&
N,=N 3

The displacement at and in the direction of Xl
S (l)=_§'_(N.. N)=P—m(l- )
1p Et ‘8- Vg 2 Bt v

The displacement due to Xl_ = 1 is:

(1) _ 2 AR sin b 2, (R’
§,, =AML =31 - ) ()

Ring (2)

The horizontal ring loading due to the shell pressure is,

H=N,6 cos¢ =BR cos ¢

¢ 2
and the ring stress is,
Ha P R2
9 =% = “3a sing cos¢

where A is the ring cross-sectional aresa,

The displacement at and in the direction of X, due top, is

1
819(2) Seg 8= %e- a= éLE; sin2¢ cosé
The displacement due to Xl =1 is
611(2) = ;— a = EE—z sin2¢

is, (reference 22)



since

= & =
GG-A’ foer 1

Relative displacements are obtained by adding ebsolute displacements,

5 =& (1) .8 (2) _ pRg sinéd(1l = v) + B g3 sin2¢v cos ¢
1p - ‘lp 1p 2 Bt 2 AE

+ 8 (2) _2 AR sinep . Re sin2¢
11 11 11 Et AE

= ;QRZ sin¢ l-v+Rsin¢ cos ¢
t A

s - Bsin®e [22 . R ]
11 E t A
The compatibility equation is:
p
X, §._+6. =0, X, = -
1% 7% °1p 1 5.,
? R l;\)-*%sinq&cosdh
X1 =~ 3 sing LR
t A
PR (1 - v) +X—R- sin¢ cos¢
X, & = o=
1 2 sing¢ o) + iﬁ
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The total ring load is:

o, A
= 2 = Rsing =
H+Xl ol Ty n (H+Xl)_Ft
where Ft is the alloweble ring stress.
tR .
o o Bsing LRcos¢- oR (l-v)+A siné cos¢
t A 2 2 sin¢ +R
2\ + —
A
tR .
_ R2 sin v (1 ~-v) + n sin¢d cos¢
Fe =% cosd - R
2X sin¢ + . sin¢
The thickness will be given by the critical pressure,
t 2 t D
p=2CE (g , R - V3E "%
and 2
F 2 (1 =v) + KR_ sin¢ cos¢
oo R osing foo, . A
P A 2 KR2
2 sin¢ + - sin¢
But > 5
AW e 3 (1 - v?) (%) = 31 -v)
'S
KR2
Ft ) 2 sin (1 -v) + =5~ sin¢ cos¢
L. 5 sing cos¢ - "
P A 2 5 1/ 2
2 sing [3(1 - v7)] + K& sing
K A



Now let

2 sin¢ [3(1 - ve)]l/l‘ = b sing
E o,
A
So that
2 2=x cos_(l-v)+szin¢cos¢
sin¢ P ¢

M+szin¢
/K

b sin¢g cos¢ - (1 - v)

— sin¢g + K x sin¢
Solving for x ,
gb (fﬁ.)
F A

B/E sing cos¢ - (1 - v) - 2K (p—t)

and the ring area is,

2 : F
A= FR [L sing cos¢ - (1 - v) - 2K (-;b-)]
2(z%) - ’
P K
2 F
A= RF [sin¢ cos¢ - 15- [(1-v)+2K .(E't")]]
-t
2(p )
2 F
A=—-—-a*—i,—— [sin¢ cos¢--/-.§- [(1=-v)+2K (53)]‘]
2sin2¢(5§-) | |

31
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F
Vv = T sin¢g cos¢ - LE- [(1-v) +2K (-Et-)]

2 t
2 si -
sin ¢(p )

The ring weight is:

Wr=2'rrpa.A=2'npa.3w

= 3/.B . ¥
W.=2mp a3 ¥

since:
P. .1
Vaeg "% =1

The spherical cap weight was shown to be

=
W =21rpa3 -'-L-tp

s \' 2CE ’ 3

sin”¢
and the total weight is:

= = 3 .¥
WEW_ +W =2mp 8 {f +06)

Which is restricted to solutions such that

v30

(For values of y < 0, the ring is in campression)

Substituting the appropriate expressions for y and ¢ into the above

equation results in:

where o = .]&;M

(2.2)

(2.3)



sin3¢ Ft

W=wpa3 o R i=gose 1 [sin¢cos¢
sin™ ¢ =

F
- X [(1-v) + 2K irt]]

2/3(1 - v2)

The importance of the ring weight may now be evaluated by only con=~
sidering the msgnitude of the ratio, wr/ws in the above equation,

Substituting the appropriate values for Wr and W gives:

cos

F

sin¢--§-
= ———
> K l-cos¢

sin3¢

mSl I"Sl

simplifying the above gives:

&_ cos¢ (1 + cosd)
- F
W t
s -2 /K&
b
where
_ t
K = %
substituting
W
_r cos¢ (1 + cos¢) / R
ﬁs 2 f-t— i
B
where

2 /K (1 - coso)

sin3¢

=

(weight index of spherical cap)
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and

1 sin¢ cos¢ X [(1 v)+2KFt] =W
F - - - ? 7
sin®¢ % 2/3(1 = v?) : ? ]
b

(weight index of ring)

A conservative first approximation of the ring weight would be to
neglect the second term of the sbove equation, thus giving

cos _ o=
Ft wr
sin¢ —
¢ P
Letting
W - . .
3 = W (total weight index)
Tp &
therefore:
W= W + W =7 (1+W-)

Using a conservative estimate of R/t = 1000, and reasonable values of
the ratio Ft/P for varying half angle dome openings, the equation is
plotted and shown in Figure 2,2,

It may be seen that for all practical ranges of interest that the ring
weight is a negligible portion of the totel weight of the bulkhead and
need not be considered in the present optimization study.
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ELLIPSOIDAL DOME

Figure 2.3 -~ SKETCH OF FLLIPSOIDAL DOME

The surface area of an ellipsoid of revolution from Figure 2.3 is

“[2 a.b2 a+\/8.2-b2]

in
a2 - b2 b

2 | —
2[1+ 8 @ 1_*'__1_:._3.2_] (2.4)

The weight of the dome may therefore be expressed as

/1_62 8

The critical buckling pressure for an oblate ellipsoid of revolution,
according to Mushtari-Galimov (reference 8) is given as:

2 2
W=pV=pAt=1rpaz[l+ 8 gn V1L 5]1:



2
p = 2CE (-E-) g (2.5)

or in terms of the thickness, t, is

t=£ —L
B 2CE
so that 5
- 3 p 1 8 1l +y1 -
W=mpa -+ n
2CE [ 1 - B2 B

W=mop a3 ‘/Egﬁ . T (2.6)
where :::::E

T=% + 8 in 1+ l-B

/1 - g2 8

The velue of 8 which minimizes t in equation (2,6) is required for
minimum weight. The table below evaluates this parameter (1) for
various values of 8.

B .10 +20 «30 Lo .50 .60 + 70 .80 «90 }1.000

T | 10.301{5.468]|3.923]3.184{2,760}2.491]2.307f2.274{2.075]|2.000

From the table the minimum value of t occurs at B = 1.0, or when
a = b; ie,, a hemisphere, The proof of this is as follows:

1+V1 - 8% _ lim gn(u +V1 + 2)
u

' 1im B on -

i
B+l /l - g2 B u-+o

- g% '
If u = ME:::EEZ » and the limit by L Hospital is

B
L (14—
lim u+\/l+p2 Vl+1,|2 =1
U0 1
so that
: T =2,0

One sees that 7 decreases monotonically and that the minimum value
lies at the end of the range where B = 1,
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TORISPHERE

Spherical Cap
P
- f
.

Torus . b

;\

- \

; 3 }

\ ]

Figure 2.4
SKETCH OF TORISPHERICAL DOME e ]

The surface area of the Torus section from figure 2.k is:

R = (Rl - R2) sing + Ré cosa (2.7)
ds = R2 da
#p=2mRds=2n R2[(Rl - R2) sing + R, cosalda
s
: 5= R,
Ap=2 R, (R - R,)) / [sing + g==%— cosolda
o _ 1 2
) R2
Ap=2m R, (Rl - R2)[§- sin® - 0 sinf + =" cose] (2.8)

1 2
The surface area of the spherical cap section is

_ 2
Ac =2 g R1 (1 - coso)



Total area of torispherical bulkhead is then

A=Ay + A
A=21R2[(1 - cost) + L2 (X ging - o sino + S58)]  (2.8)
1 JE J-1
where ~ Rl
J =g
2

Since in torispherical domes R, > R, it may be assumed that the larger
radius defining the spherical CTap will have a lower buckling state
than that of the torus portion. That is, we may substitute R1 for the
radius in the stability equation for spherical domes under normsl
external pressure,

Therefore:
% 2
P = 2CE () (2.9)
1

expressing t in terms of weight gives:

W=A<top
where
= surface area
t = shell thickness
p = density of material
_ W
or t = * (2.10)
substituting equation (2.10) into equation (2.9) gives
2= 2 ¢ v (2.11)
E 2 R 2 A2
LS
substituting equation (2.8) into equation (2.11) results in
£ 2n2p2R 6[(l - cos8)+ =1 (X sin6 - 6 sing + 32520]
1 J2 2 J=1
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In general, it is sometimes more advantageous to express the geometry

in terms of a and b instead of Ry and Ry

- following relationships are developead,

a = Rl sing - R2 sine + R2

or

b = Rl_- Rl cos® + R, coso

2

By some alegbraic manipulation

e cosd + b (sing-1)

From figure 2.4 the

Ry = sin® + cosf-1
R = b{sin6 + cos@-1)+(cose-1)[a cose + b(sine-1)]
2 cos® (sind + cose-1)
Rl
Since J = e this may be expressed as
2
J = cos @

sinf + cosf-1

a/b cosf + sinf-1 M

cosf=-1

equation (2.13) may be further simplified to read

a [cost + sinf=-1 ]
&R =R = i
1 sind + cos6-1
Letting
Q@ = RO [(1- cose) + 22t

Z

Equation (2,12) may be expressed as:

p _ __cul
_ﬁ
E 2n2 p2 a Q

Assuming a constant buckling coefficient C and constant values of
p and a, the parameter Q is an index of the efficiency.

cos9

(% sind ~ 8 sind + ———)]2

J=1

That is,

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

minimum weight occurs when the parameter Q takes on a minimum value,



To evaluate the parameter Q for a minimum value as & function of 6 and
a/b, a numerical computer program was used. These results are plotted
in figure 1.2 . From the figure, the minimum value of § occurs at

a/b = 1,73 for an angle 6 = 60°,

For 6 = 60°, sine=-'/23, cose=-:2l- and 1,73 = /3, so that %=/§

Substituting these values into the expressions for a and b yielgd,

3 3
/§b—Rl-3-R2—é-+Rg,1.e.
R. R R, R
=1_ .2 =R ook 2
b=g=-3z=+ /3R, =R - 3=+
Giving R, = 0, 8 = 60°

This is the same geometry as the optimized shape of the spherical cap.

Zero-Hoop Stress Bulkhead

AN
——— b e

; / =
Lo ,:‘_..‘\\, e /,/ |
N ‘L - ’
\ ‘ ’I’/ V2 |
’ |
B -

Figure 2.5 - SKETCH OF ZERO-HOOP STRESS BULKHEAD

The total surface area of the dome is

A=A+ A (2.18)
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vhere area of spherical cap

A
sc,

and A area of zero-hoop stress torus

The surface area of spherical cap is

_ 2
A ,=21R (1 = cose) (2.19)

The surface area of zero-hoop torus is

A, =7 a2 (£ -0 Reference 26 p. 12 (2.20)

_ substituting equation (2.19) end (2.20) into equation (1) gives

A =21 R12 (1 - cosg) + 7 a° (- o) (2.21)

Since the zero~hoop stress bulkhead is difficult to express
analytically, a graphical method is employed using the constants
tabulated in Table 2.2, Expressing the spherical radius Rl in
Figure a in terms of the base radius a and the coefficient C3 from
the relationship shown in Table 2.2 results in

Rl =2 a C3

Substituting the ebove relationship into equation (2.21) gives

A =7 a? [8 032 (1 - cosg) + g-- 8] (2,22)

From Figure 2.5 since R, = 2 Ry, and because of the lack of compressive
hoop stress in the torus portion of the dome, it may be realistically
assumed that the spherical cap will have a lower buckling allowable
than that of the zero-~hoop stress torus. Substituting Ry for the
radius in the stability equation for spherical domes under normal
external pressure gives

p =2CE (&) (2.23)

Expressing t in the sbove equation in terms of the dome weight gives

W=Atop : (2.24)



where A = +total surface area
-t = shell thickness
p = density of material

Substituting equation (2.24) into equation (2.23) gives

P . 2CW (2.25)
E 02 A2 R12

Substituting the previous expressions for A and Rl into the sbove
equation gives

%’ = 2 6 2 .02 . 22 T 2 (2.26)
20" a = C3 [8(33 (l—cose)*g-e]

Letting

D _ W ‘
E 2 6 2 (2.27)

Assuming a constant buckling coefficient C and constant values of

p and a, the parameter § is an index of the weight efficiency. That
is minimum weight occurs where the parameter Q takes on a minimum
value,

Equatic_m (2.27) may also be expressed in terms of the weight efficiency
index w, by simple algebraic manipulation.,

Rewriting equation (2.27) in the form

W2 2 6 2

=,

1] [}

h F-»)
ol

ko)

] o

[9}]

=3 =3

™1 o

e

]
£1

Letting /Q

=,
I
£
©
®
2
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Since it is desirable to compare the results of this configuration
with that of the other configurations investigated, it is necessary:
to express the geometry in terms of the base to height ratio a/b.

From Figure 2.5 where

b=y+h .and h R1 (1 - cos®)

and from Teble 2.2 where

R, = 2aC end ¥y

1 3 aC

2

substituting the relationships for y, h, and R. results in the
following expression for a/b as a function of %, C, and C_,

2 3

2 = 1 -

b C, + 203 (1 - cosg)

The final results are plotted in Mgure 1.2.
Table 2,2

0 ¢ =% €3 = ':—i 5
90 0 0., 5000 1
85 L+ 0U36 0.5009 1.04h
80 .0871 0.5038 1,087
75 +1302 0.5087 1.131
T0 .1728 0.5158 1.17k
5T.5 $2762 0.5u4l4 1,28
45 «3726 0.5946 1.387
32.5 <4590 0.6821 1. k486
20 5318 0.85k49 1.572
15 5559 | 0.9828 1,606
10 «ST6L 1.1999 1.630
5 «5924 1.6936 1,650




CHAPTER III - STIFFENED SPHERICAL DOMES UNDER EXTERNAL PRESSURE
MERIDIONAL STIFFENING

Introduction

The state-of-the=-art for predicting the buckling pressure for meridio-
nally stiffened spherical caps is essentially based upon a few experi-
mental investigations. Little effort has been expended to develop a
stability analysis for this type of stiffened configuration. Basically,
the experimental investigations have been limited to exploratory tests
in an effort to determine the possible improvement of the buckling
pressure of meridionally stiffened domes compared to monocogque domes
having the same weight.

Kloppel and Jungbluth's experimental investigations (Reference 12) of
meridionally stiffened domes were unsuccessful in their attempt to show
an increase in the structural efficiency over that of unstiffened dames,
Ebner's experimental progrem {(Reference 16) resulted in an apparent
inconsistency for the structural efficiency of the two domes tested in
his investigation of meridionally stiffened dcmes. Recently Krenzke
(Reference 17) tested machined meridional stiffened hemispherical

domes of small diameter and concluded from his results that the struc-
turel efficiency of this reinforcement design is less than that for
monocoque domes,

Rib Instebility

The variation of the rib spacing along the shell surface results in a
load distribution of varying intensity along a meridional rib as shown
in Figure 3.l below:

Figure 3.1 - LOAD DISTRIBUTION FOR MERTDIONALLY STIFFENED DOME



Lacking a sufficiently simple analytical method of predicting the
stability of the meridional ribs in such a reinforced dome configura-
tion, an approximation of the expected rib stability will be based
upon the analysis of a fixed end arch under a uniformly distributed
pressure as given by Timoshenko (Reference 20 )

Since with the non-uniform loading condition the buckling load will
support greater loading then the uniformly loaded arch, a correction
coefficient B will be epplied to the stability equation of an arch as
given by (Reference 20) to reflect the increased failing pressure.

That is
1 1]
B EI 2
ap = 225 [ - 1] o (3.)
R .
where = Loading intensity

Correction coefficient
Effective moment of inertia of rib and skin

Radius of arch

® o0 o H W oo
[}

Buckling coefficient evaluated by triel from thé
equation k tanb® cot k 6 = 1, ‘

If it is assumed that failure will initiate at the point of the
meximum inscribed radius considered for panel instability, then
equation (3.1) may be expressed as

_B EI' (2

R 2r R3

P [ - 1] O (3.2)

If a simplifying assumption is made that local panel failure occurs
Just prior to rib instability, the resulting post buckling strength
of the rib'need not consider an effective skin acting with the rib,
That is, I may be replaced with I_ in equation (3.2 )

R
Therefore
p, = EEZ ; [ - 1] (3.3)
r R
where 5 = EL
2

Fram experiment the correction factor B may be determined.



The experimental result from the first meridionally stiffened dome
(#1-M) using equation (3.3) showed that B had a value of 5.0,
Although primary failure was due to panel instability fthere was no
secondary rib feilure, Therefore, B = 5,0 describes a lower bound
of the correction factor., Higher values of B are to be expected in
subsequent tests when rib falilure occurs. A value of B = 5,0 will
be assumed adequate in & preliminary evaluation of rib stability in
the proceeding analysis

Panel Stability

The allcwable panel buckling of the skin between the radial stiffeners
will be based upon the theory of Huang (Reference 7) in the region
vhere the nondimensional parameter A is > 4, and for the region of

A < b plate stability will be based upon flat plate theory, since the
effects of curvature become smell., The validity of these assumptions
will be Justified later in the analysis by experimental data.

The non~-dimensional parameter A is defined as

5 1/4 a
y=l2 (-] & (3.4)
VRt
where = Sphericael radius of curvature
t = Thickness of dome
v = Poisson's ratio
e = Base radius of dome

To make the above non-dimensional parameter A applicable to local
panel instability it is necessary to substitute for g, the radius of
the largest inscribed panel between the meridional ribs., This radius
is depicted in the sketch.

Therefore, for panel instability
1/k
2
y=[12 (1-0v)] = r =y R (3.5)
/Rt

where the variable y may be shown to be

sin a sinc)

¢ = arc sin ( )
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where

= .ei%_c_:_g_s_ (cosae + sin26 cos 2 T)
c = arc sin (________sinsinT;ine)
d = -arc cos (sin ¢ cos a)

(¢ versus N is plotted in Figure 3.2 for 6 = 23° 3'5' and 6 = 60°,)

o

From (Reference 20) the stability of a flat circular plate is
expressed as
2 .
K E t
o = (=) (3.6)
cr (1 - v2) r

vhere K is the edge fixity coefficient.

P R
cr

2t

Equating 0oy = with equation (3,6) results in

2KE+3 (3.7)

cr (l-\:2) R r2

P

to express the sbove equation in non-dimensional form using the
perameters of A and pcr/PCIass the following manipulations are
necessary,

Dividing both sides of equation (3.7) bY P 1.0 vheETE
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FIGURE 3.2 PANEL RADIUS VERSUS NUMBER OF RIBS
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. JLI6E ()7
class 1 - v2 R

results in

P
cr _ 2 KtR (3.8)

P lass 1.156 r2 \/1 - v2

Substituting equation (3.5) into equation (3.8) and simplifying gives

P
cr _ 6.,0K
P - 2 (309)
class A
wvhere K = 1,22 for clamped edge support

e
[}

0.35 for simply supported edges

Since the actual condition of edge restraint for the cirecular inscribed
panels between the meridional ribs is unknown, equation (3.9) will be
plotted in figure (3.3) using both conditions of edge restraint. To
test the validity of this predicted panel buckling equation, Ebner's
experimentsal results on meridionally stiffened spherical caps (Reference
16) are plotted in the same figure. It is not clear fram the experi-
ments as to the primary mode of failure, but from the agreement with the
predicted panel instability equation, it seems that panel failure was
incipient, Since the test points fit more closely to the condition of
clamped edge, this condition will be assumed in the prediction of the
local panel stability. That is substituting K = 1.22 into equation
(3.7) results in

3

2,44 F ¢
2

- (3010)
(1 -v2)R r

It was previously stated that the theory for the stability of spherical
caps rigidly supported at the base as developed by Huang in Reference
T, was also applicable to the prediction of local panel stability of an
inseribed circular plate between the meridional stiffeners. This
assunmption is substantiated when a comparison between Huang's theory
and the experimental tests conducted by Krenzke (Reference 17) and this
paper. The results are shown in Figure 3.,3. The experimental domes
show clearly that primary failure occurred by panel instability between
the rib supports. '



It may be concluded from the figure that, for plate geometry's result-
ing in A < 3 that panel stebility is the limiting mode of failure shd
cannot exceed the ratio of P/Pyjgcs = 0.80., This implies that all
reinforced domes falling into this region of A, the structural
efficiency will be less than a monocoque dome of equivalent weight.

The region of interest for reinforced domes is therefore confined in

A < 3 where panel stability is greater than the limit imposed by Huang's
theory. This region may be obtained by introducing a sufficient number
of stiffeners such that the radius of the unsupported plate is small,
Therefore, the proceeding analysis will be concerned with the arrange-
ment of stiffeners that allow A < 3.

Optimum Desigm

In general, failure of reinforced meridional domes msy be attributed to
tvo distinct modes of failure; Panel instability of the unsupported
skin between the ribs, and general instability of the meridional ribs.
For an optimal arrangement of reinforcement the two modes of failure
occurs simulteneously. Although coupling or interaction between the
feiling modes normally exist, for an approximate analysis the two
fallure modes will be considered to be independent of each other.

Using the equations previously developed it is now possible to arrive
at an optimum design for the meridional stiffened domes.

The total weight of the dome may be expressed as

= + .
W= W+ W (3.11)
where W£ = total weight of dome
wg = weight of shell
W§ = weight of ribs

the weight of the shell and ribs are given as

W
s

b2 Rt (1 - cos8) (3.12)

and

=
"

R =PgR VR 6 A (3.13)
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vhere
ps,pR = Density of material of shell and ribs respectively

6 = Half opening angle of dome
N = Number of meridicnal ribs
AR = Area of rid

t = Shell thickness

Substituting equations (3.12) and (3.13) into equation (3.11) and
essuming Pg = PR results in

W, =ol2 v R° ¢ (1 - cosd) + N R 6 Ag] (3.14)

From equation (3.7) the critical buckling pressure of the penel was
given as

DK E 3

= (3015)
(1 - v2) R r2

%

or this may be expressed in terms of the shell thickness as’

p_ 1/3 g1/3 2/3 (1 | ,2)1/3

P
t = (3.16)
K1/3 E1/3 21/3 .

and from equation (3.3) the stability of the meridional rib was given
as s

BE I (k= - 1)

P =

since

vhere T = radius of gyration of rib,

Substituting into the above equation and solving in terms of the rib
aresa results in

3
PR R r

A, = (3.17)
Boper® (¥ -1)
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Substituting equations (3.16) and (3.17) into equation (3.14) results
~in .

2w R2(l - cose)PI}/3Rl/3r2/3 NROR r Py (
= + 3.18)

W

Since optimum design assumes that both panel and rib failure occur
simultaneously,

by proper substitution, equation (3.18) may be expressed as

W 13|00 B2(1 - cose)rY/3/2/3 g k'2/32510/3
- = (D) + (3.19)
P B x'L/3 B 17 (6 - 1)rt/3
where
U K
K =
l - v?

letting ¢ = %- and simplifying the above equation results in

2

Wy p1/3 53 273
P

!
N gt K
() ﬁ?[? (1 - coso) + =S

p BTr(x" - 1)

It is desired to express the total weight W, in terms of an average
weight thickness +t. Where

Hep

i= 5
p 27w R (1 - cose)

Substituting the above relationship into equation (3.19) and
simplifying gives

1/3 2/3 v L2
4 5 i)
x'1/3 B2 n(l - cosB)(k® = 1 )T

I jckt



where the expression inside the brackets [ ] is defined as the
inverse of the efficiency n

That is .
1
n= (3.20)
2/3 1 2
i3 (1 Aot > 5
x' B2 m (1 -cost)(k* «21)T
therefore
~ 1/3
t.1 R
R0 (E) (3.21)

For optimum design it is necessary that the efficiency term n be
maximized in equation (3.21).

Substituting the empirically determmined coefficients of K' and B of
2,44/1 = v and 5.00 respectively into equation (3.20) results in

n=

2
\Y

&-_Rgﬁ_/i <1+ N 6 2.uk t° >
1.3

10m(1 - cos0)(k° = 1)(1 - v2)I°

The equation above is solved for half-dome opening angles of 6 = 23°

35' and 8 = 60° for various ratios of (t/I')2. The results are plotted
in Figure 3.},
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CIRCUMFERENTIAL STIFFENING

Introduction

In the present study, a semi-empirical optimization analysis will be
applied to a special case of dome reinforcement; that of circumfer-
ential ring stiffeners. This semi-empirical formulation assumes that
the stability of a spherical dome may be approximated by short cone
elements bounded by circumferential frames subjected to external
pressures, The boundary condition will be sufficient to provide a
simply supported cone element whose buckling mode consists of one-half
vave in longitudinal direction and many waves in the circumferential
direction, With sufficient bending rigidity in the closure frames to
prevent frame instability, the problem is reduced to the study of
local panel failure between the fremes., Basically the optimization
study then consists of selecting the frame areas and spacing so that
2ll panels fail simultaneously under a given pressure with a minimum
amount of weight.

Shell Segment Instability

To idealize a spherical dome subjected to external pressure by short
cone elements, a necessary condition that must be satisfied is that
the membrane loads are compatible,

The membrane loads in a spherical cap under uniform pressure are

. IR

N¢_Ne = 2 (3022)
where

N¢ = Meridional Load 1b/in

N, = Hoop Load 1b/in

R = Radius of Curvature in

P = Pressure - lb/in2
The membrane loads in a conical shell under uniform hydrostatic
pressure are expressed as

PcR
Ny =53 Ny =P_R (3.23)
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vhere the radius (R) is assumed to be the average radius of curvature
of the conical shell.

Since the membrane loads are not compatible with equation (3. 22),
axiel loed will be applied such that

N = o °
6 2

N, =0 (3.24)

we
o2

Summing the total membrane loads as given by equations (3.23) and
(3.24) results in

N¢ =Ny = IL R (3.25)

Equating equations (3.22) and (3.25) and solving for D results in

P=2Pp, ' (3.26)

From reference 25 the allowable buckling pressure for a cone under
uniform external pressure may be expressed as

t 5/2 Rav
P, = .92 E () =& S (3.27)
¢ R L
avg :
where
£ = slant length of cone
Ravg= average radius of cone

substituting p= 2 Pc from equation (3.26) into equation (3.27) gives

5/2 R
p=1.84 E (R*‘ ) —2vg (3.28)

avg



. The approximation of a spherical cap by smsll cone elements neglects
the important effect of the incréased stability due to the curvature.
of the shell. An estimate of this effect masy be studied empirically
by evaluating the experimental results from reference 17 for hemi-
spherical domes under uniform external pressure, reinforced by
circumferential rings. The increase in the buckling stability due
to the curvature effect will be based upon the following empirical
relationship.

F h
=2 = £ (2) (3.29)
P L
where
exp = Experimental Buckling Pressure
P = Buckling Pressure From Equation (3.28)
h = Curvature Index
L = Slant Length of Cone

A plot of this functional relationship is shown in figure 3.5 using the
selected experimental data resulting in pexp/P > 1. A solid line is
drawn through the test data and extrapolated for values of h/% < ,03,
For the purpose of evaluating the curvature effect, the empirical curve
in figure 3.5 will be expressed analytically. A parabolic function of
the form y = a + bx" seems to adequately describe the curve within the
region of primary interest and is indicated by the dotted line in figure
3.5. Determining the constants yields the following equation

5.2
pexp =P [1.0 + 94 () ] (3.30)

for the limit h/% < .05,

Since the empirical data is probably conservature, because the failures
indicated the the circumferential rings did not provide the necessary
condition of edge restraint as assumed by the cone analysis, the
equation is a more optimistic estimate of the curvature effect.

Substituting equation (3.28) into the above equation gives

5/2
_ 1,84 E ( t )

exp !L/Ravg Ravg

2
(1.0 + 9k (%) ] (3.31)
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Optimization of First Cone Element
The total weight of the first cone element is composed of the weight

of the skin panel and the weight of the circumferential ring. The
total weight is expressed as

W, = Wy, + W (3.32)
T
1 1 R -

where

W = Total weight of first
cone element

w,p = Panel weight of first
1 cone element

W = Ring weight of first
R

1 cone element
AR = Ring cross sectional

1 area associated with
"first cone"

p = Density of material
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From the sketch

= 2nR2t1 (cosa, - cosb) (3.33)

F

1

=
fl

R 2nR, ARl | (3.34)

Ring Instability

' Since there is no rigorous snalytical method of determining the area

of the rings necessary to prevent general instability failure of the
cone, an approximate analyses developed by Shanley (reference 18) for
approximation, From the reference the cross sectional area of the
freme necessary to prevent general instability buckling is given as

1/2 .y

= (L&
E
F
vhere .
CF = Dimensionless empirical coefficient
K = Shape coefficient for frame
EF = Modulus of Elasticity of frame
D = Diameter
M = Bending moment
£ = Distance between frames

Expressing M in terms of the equivalent loading index N gives

N n D2

M= =

vhere N may be expressed as a function of pressure by N = BR s Sub-
stituting the above equations into equation (3.35) results”in

1/2 R5/2 Pl/2

1/2 _1/2
Ep

(3.36)

L



Neglecting the effect of curvature, the critical buckling pressure of
the cone element as given by equation (3.28) is

5/2 Rav
L

g

P = 1.84 E (Rt )
avg

substituting the above equation in equation (3.36) (assuming E_ = E)

end simplifying results in F

S
R . R l;ﬂ
Noe ()
where
W= \) e ' (3.37)
30 8 ki CF ¢
since (R/t)l/h is relatively insensitive over a wide range of value

it will be treated as a constant

that is

1/k
= (& '
N = (t) N
therefore
t R12
A = (3.38)

Since the development of the constant in equation (3.37) is very
approximate, it will be evaluated experimentally.

a3
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Design Optimization

Substituting equation (3.38) into equation (3.34) and evaluating
equation (3.32) results in

) 2T Rl3 tl o}
wl =2 n R tl p(cosa1 - cosB) + = 21 (3.39)
- since
Rl =R sinal
0 - al
21 =2 R sin ( > )
substituting and simplifying
5 sin3al
W, =2 mR" t, plcosa, - cosé + o, (3.40)
2 N sin( 5 )
solving for tl gives
W
b, = 2 : (3.41)
2 sin al
2 TR p |cosa, - cosb +
1 6 - al
2 N sin( > )

substituting equation (3.41) into the stebility equation (3.31) for
the dome gives

h 2 5/2
1,84[1.0 + 9k (=) W
P1 21 1
- = (3.k42)
E1 2 3 5/2
sin“a
plcosa,.- cosb +
R ve &V8 1 6 - al
ave 2 N sin(=——=>)



where from the figure for the first cone element

0 -«

h = R[1=-cos (—5—3) ]
6 - al
11 =2 R sin ( 5 )
. ) Ro + Rl ) R sin6 + 31nal
avg 2 cos B 2 x el + al
cos[E-— 5 ]

substituting into equation (3,42) and simplifying gives

5/2
Pi_ __7_1-8“ (ﬁ) ] (3.43)
El 2 ws 2 R5 Re
vhere the terms inside the brackets [ ] is
0 - al 2
1 - cos 5 )
1+ 94
6 - al
2 sin( > )
sinf+sina 3/2 sin3a 5/2 0~-0.
1 1 . 1
5 cosa., -~ cosb + 2 sin( )
™ l+a 1 ) e-al
cos_[-é"- —2——] 2N Sln( 2. )

In the above equation substituting A Ql and J where

2

l’
0 =0

2
6 -a
2
1 6 -a sin6 + sinal 3/2

6 +a

2

1 -« cos( l)

1+ 9k

2 sin( l)

4

m
cos[2 -

3

sin~a

1
= - +
Ql cosal cosb e

2 N sin{ >

L)



1. 84

J
. 5/2 R (R p)5/2
results in
p I W 5/2 A
B s
1l Ql

The weight of the first cone element (W ) from equation (3.40) was.
shown to be

5 : sin3oL:L
wl=21rR tlpcosal—cose+ 5 — o

2 N sin(

L)

This may be simplified by substituting Q from the previous relatlon-
ship, therefore

_ 2
wo=2 nB t, e (3.45)

For the succeeding cone elements

P 5/2
2. J W, Ae
E 5/2
2 %
5/2
Y JW A
J.:.%_i
E 5/2
3 Q3
or
5/2
El Q 5/2



and also the weights of the succeeding cone element may be expressed as

=
il

2
5 2 R t2 p Q2

2
3 2 1R t3 p Q

=,
L}

3

or 2
2 1R ti o} Qi

=
i}

The total weight of the stiffened dome may be expressed as

WT = wl + w2 + eee Wi + Wi+l (3.L6)

Using the previously developed equations, it may be shown that the
total weight, as given by equation (3.46), may be expressed as

D 2/5

1
Ve = (===)
T BT

2/5 2/5 2/5

Ql/ +(p2 ) Qz/ . (pi ) Qy +(Pi+l ) sy
2/5 ‘E_J 2/5 ***'B.J 2/5 ‘B, .J- 2/5

)‘l 2 A2 i >‘i i+l Ai+1

Since optimum design requires that all cone elements fail simultaneously
then, Pl = Pi

Assuming that El = Ei’ the above equation is further simplified to read -

2/571 Q Q Q. Q
1 i i+l
53 NEZE NG N T N (3.47)

1 2 1 A+l

W, = (

By proper substitution it may be shown that

5/2 5/2 5 5/2

- 2 - 2 _
p =J(2 7 R tg p) Al J(2 7 R t, p) by J(2 n R ty o) A

2 i
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Assuming that the

That is

therefore

thickness of the shell (t) is constent.

Substituting these relationships into equation (3.47) results in

¥

or this may be

where

O
L}

ns®
0

O
[}

U1

(

—2)
EJ A

2/5
1

expressed as

5/2
I W,

M

[Ql +Q 4+ ... 0 +Q

' 5/2

[cosal - cosf +
[coscn2 - cosa

[cosai - cosa,

1

sin

3

!

2 N sin(

sin3a + sin~a

+

1

6 - o ]
L)

2

3
2

i+l

a

2 N sin(

sin
+

3

a.

1

i=1

-0
2
=)

3

|

]

+ sin”a,
i

i-1

[ l - cosa, +
i

2 N sin(

|

sin3a

2 N sin

i

[+

2

e

2

a

i

)

|

(3.48)

, (3.;9)



letting A
i
n =
LN 5/§
[ + @+ vee gy + a1

Equation (3.49) may be expressed as

P _
-E-_ J n T ) (3.50)

where n is the efficiency of the circumferentially stiffened dome. For
optimum design n is to be maximum.

The efficiency n is evaluated for a specific case of a dome half opening
angle 6 = 60°, The results are shown in figure 3.6 for assumed values
of N = 200, 300 and k0O. It may be seen that for increasing values of
N that the efficiency does not incresse linearily. At N = L0O the
meximum efficiency is shown to be at a, = 559,

An interesting result develops in the selection of the succeeding frame
spacings for optimum design requirements. As a consequence of equating
Al = Ai in the previous equations, a unique solution exists that shows
for optimum design the frame spacings are equal, That is equating

A, = A, results in
1 i
6 - a
1~ cos( 5 l)
1+ 9}
0 -«
2 sin ( l)
2
6 - ay sing + sinal 3/2
2 sin( )
2 6 - ¢
cos & - 1
2 2
2
%i-1 T %
1= cos(—2_)
1+ 9k
%ie1 T %
) 2 sin (--2?-—-)
a, - o, sina, + sina, 3/2
. i-1 i i-1 i
2 sin( )
2 Q. + a,
cos L - i-1 i
2
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It may be shown that the equality may only exist if

L LT P
1k T
i |
13 I - i AN
N= 900 |
N
12 Pt ’\\
= i NAM= 300
' i
> 11 //
[&]
& /
g ! /”vz 200
| ) /
10 / ,/_\\
9 i/ X
8% L8 50 52 54 56 58
a, = Degrees

Figure 3.6 - EFFICIENCY OF CIRCUMFERENTIALLY
STIFFENED SPHERICAL DOME - © = 60°



CHAPTER IV - GEODESIC RIB-STIFFENED SPHERICAL DOMES

Introduction

For sphericel domes, it has been the custom to orient the ribs in the meridian
and circumfereptial directions. This arrangement suffers from the defect that
a2ll directions on a spherical surface are directions of principal curvature,
so that no particular directions of the grid stiffening should be assignable.
In other words, the grid elastic properties should be inverient with respect
to rotation. In addition, the elastic properties should be homogeneous over
the surface.

Basic Relations - Approximate solutions to the uniform grid problem are
provided by the "geodesic dome" concept by which a mesh of small triangles
vhich are approximately of constant equilateral size are mapped upon the
spherical surface. The term "geodesie" refers to the fact that the mesh of
lines on the spherical surface consist of arcs of great circles which are
geodesic lines, i.e., lines of minimal length between specified points. An
exact solution is provided for equilateral triangles in only three particular
cases, the regular tetrahedron, the regular octahedron and the regular icosa-
hedron. Of these three, the icosahedron with 20 faces has the maximum number
of faces. Since the mesh size must be much smaller than this, an approximation
may be made by further triangular subdivision of a face of the icosahedron.

An approximately uniform pattern is thus obtained on the sphere circumscribing
the basic icosshedron by & ray from the center of the sphere which traverses
the trilanguletion of each face of the icosahedron. '

A slight variant of this procedure will be employed and is described in the
following.

O

Figure 4.1 - ICOSAHEDRON INSCRIBED IN SPHERE
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Figure 4.1 shows a typical face of the icosahedron inscribed in the
sphere with north pole, N and center O. The face of the icosshedron
is given by its vertics A, B, and N. The midpoints of the edges at
C', D', and E' are projected onto the sphere to C, D, and E. Then the
spherical triangle ABN is subdivided into four spherical triangles
ACE, EDB, NDC, and DCE. The first three of these are congruent isos-
celes spherical triangles and the fourth is equilateral.

The plane triangles ACE, EDG, NDC, and DCE associated with the spheril-
cal triangles are now subdivided along their edges and these points are
projected onto the edges of the spherical triangles may be connected
by great circle arcs in pairs from each vertex to obtain the grid sub-
division on the sphere.

This is equivalent to subdividing the plane faces and projecting the
triangle subdivision onto the sphere.




r = e cs8C 36o

From the half-face of the
icosahedron AE'N, it is ap-
parent that the distance of
the vertex A from the axis is
r = e csc 36° where 2 e 18 the
length of an edge of the icosa-
hedron. For the angle ¢ , one
has:

cos @ =1/2 csc 36°
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By spherical trigonometry, the central angle for the great circle arc
CD is glven by:

cos P = cos‘?(#) + sin® # cos 72°

Where: Y= arc &D

1/4 cac? 36° + (1 - 1/k cse® 36°) cos T72°
= 1/4 (1 - cos 72°) caet 36° + cos T2°
= 1/2 sin° 36° csc® 36° + cos T2°

Thus : cos §

1/2 + cos T2° = cos 36° *
Y = 36°

cos Y

The half-chordal distance e will be:

e =Rsind_)

e = R/l-l/hcscz 36° k.1

* Since: cos 72° = ‘E,EL , cos 36° = 1541



The half-chordal distance f is:

f = R sin WV

f = R sin 36°

Designate the chordal distance CN by 2g.

(4.2)
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From the sketch the distance g is:

g€ = Rsin -gL = R,.[l/E-l/Zcosﬁ:

. R 'J 1/2 - EL/h cse —360

g = -g—,j2-csc36° (4.3)

The chords 2f and 2g are now subdivided into equal segments respec-
tively, to be projected onto the spherical arcs NC and CD. These
points will define the grid pattemn.

Due to symmetry, it suffices to consider the half-chords f and g.
For odd and even subdivisions the first interval will be a half or
a full interval.

)

.L Fo e (Fe T g ) )
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Tus: /2, n odd

¢ , neven

Where n is the number of division of the full chord.

Then:

c
-1 Yo
O = 41> = tan 7

n-l, n odd

1 Cot i€ z
—G—i = tan F ’ i = 1,2,00
n-2, n even
2

-~ A
ai.is the required arc subdivision of NC and CD.

Obviously one has:

N N [ [
AC = AE = BD = BE = NC
and
M N N
EC = ED = (D

Thus, all control points may be lald out. Values are computed for unit
radius and added cumulatively to facilitate layout from a vertex.
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Rigidity Properties of Equilateral Triangular Rib Grids

The extensional - compressive and bending rigidities of equilateral
triangular rib grids attached integrally to plate elements will be
computed by obtaining the Hooke's law relation for each construction
separately and then combining the plate and rib elements. In obtain-
ing the grid properties, the assumptions are that the grid spacing
1s close enough that the construction may be approximated as a two
dimensional continua and that depth-wise shear deformation (Love-
Kirchhoff hypothesis) through the ribs may be neglected.

Hooke's law, which expresses the elastic properties of the material
at a point, will be developed by considering homogeneous stresses and
strains in the gridwork.

A symmetric grid orlientation will be chosen for simplicity and 1t will
then be shown that the elastic properties are equivalent to that of an
isotropic plate, and hence, independent of direction.

Figure 4,1 shows such a symmetric grid layout.

,TTss
— T Y

A

xx

Figure 4.2 - SYMMETRIC GRID LAYOUT



The grid consists of pin connected bars in three directions which, due
to the homogeneous stress condition, are typical for any triangle,

1 mn. Periodic (repeated) distances 23_ and A\_ are shown at the
edges of the grid. These edges are loaded by 1¥ne loads T and T
per unit of length along the 22 sand T and T __ per unitof

length along the 2 's., ¥y yx

The bar loads are designated as P Y and P

l 3°
The displacements of the points m and n relative to the point 1 are

shown in Figure 4.3 M goes to m' through displacements u o Vm and
n goes to n' through displacements Uy Ve

Co & Moy oon 36°4 05038

+ 12‘_(.“'»'%*'5?’”‘“)

MM
N
\ -~
/)\ -u’m
\
NG

Figure 4.3 - DISPLACEMENTS OF TRAINGULAR GRID PATTERN
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The original bar lengths L.
a2, The deformed bar lengt

B

s (i =1,2,3) are equal to the grid spacing,

s Lj/_ are obtained by projection of u and v

cnto the original lengths using the customary infinitesimal deformation

epproximations,

The chenges in bar lengths are:

oL, =

AL, =

Where A is the bar cross-sectional

5y + By

2

2 A
B

- 2
E

93

E

1 (un + /3_vn)

2 IS =

[
=

ares,

O

(u + 3 v.)

(w + B v)

(um + un)

One obtains the load-displacement relation for the bars,

AE

28

AE

2a

AE

a

(um + 3 vm)

(u + 3 v.)

(um + un)

From Figure (L.6), the periodic distances 2x, end Ay are:

2x, =
X

2 a cos 30°=/?_>a, Ay

a

(Lok)

(Le5)



Edge loads TaB’ ay B = x,y are related to bar loads by the equilibrium

reletions:
- ° - B -
Tyy%y = (P1 + P2) cos 30 : (Pl + p2) Tyya
T A = (-P. + P.) cos 60° = 2(p. +P) =7
yx'y 1l 2 2 1 2 yx
- o _ 1 =
2Txxxx = 2P3 +(Pl + P2) cos 60° = 2P3 +5 (Pl + P2) Tx A a
= 1 o = ﬁ_ - =
2Txykx = (-P1 + P2) sin 60 = = ( P+ P2) Txy A a
i.e,
T X = 1 (Pl + P? + ) P3) ‘
X 2 /§ a )
_ B
Ty = 2a Pyt B,) ' (4.6)
- = 1
Tyx Txy 5o ( Pl + P2)

One observes that the stress symmetry relations are a natural conse-
quence of the internal bar loads as related to bowndary stresses,

A symmetric set of loads Txx'

the grid.,

Equation (4,6) shows that for this loading, P1 = P
the displacements in equation (Y4.5) may be given f%om:

+d
]

o
"

T
Yy

28

2AF

#0, Txy = 0, will now be applied to

s which implies that

(u + /3 v) 1

g (La7)
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Where

The strains €y along the x and y axes are: (See Figure h,-S)

B
_mal-mn _ 2u
€xx mn a
L
e = 2 =% _ v - 2
yy %0 a cos 30° 3 a

Eliminating u and v from equation (L4,7) and (4.8),

P
&x = AE * Syy = 3ag (M Py - Py
From equation (4,6) for P, = P,
T = A—(p. s+2p), T =5 p
xx A e 1 3 Yy a 1

and eliminating P. and P_ fram (4.9) and (L4.,10)

1 3
. a3 1
E:xx T 2AE (Txx T3 Tyy)
. a3 _1
v = 2AE (Tyy 3 Tex)

(4.8)

(4.9)

" (4,10)

(L4,11)

These are. the extensional stress-strain relations for the grid network,

Next a skew-symmetric set of loads Txx =T =20, Txy # 0 will be

applied to the grid. Yy



Fram equation (4.6) one sees that this loading gives the bar loads:

Pl+P2=O P3

"
o

These bar loads substituted into equation (L4.5) gives:

u +u =0, v +v =0, i.e,
m n m n
u =u Te-u , vV =V = -v

n m n m

The distorted triengle is shown in Figure 4.l

Figure 4.4 - DISTORTION 6F TRIANGULAR GRID
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The local origin O moves to O' with displacement u, The angular strein
2 g _* is defined as the decrease in the right angle between the x and y
axe3’when they are deformed into the x', y' axes under the load.

From Figure (4.4) one obtains the angular relation,

2’exy = Bl."82

For the customary small angle linear strains,

. & -
By = T By A
while
exx = eyy = 0
thus
2e =2(v+i) = (u+ /3 v)
Xy a 5 a /§-
From equation (4,5) for P2 = . Pl'
- - B =3
P, = =P == (u+ /3 v)= > AE e, (k,12)
Equation (4.6) gives
- = b,
P, + P, =2a Txy (4,13)

*This is a tensor strain and is related to engineering shearing strain
exy by the relation,

2 = e
€xy Xy



Eliminating P, and P, from (4.12) and (L4,13) gives:

1 2
2 e = L T
v SBAE N
(Le1k)
exx = syy = 0

These are the shear stress-strain relations for the grid network.

Consider now a grid net of unit thickness and width b, The bar cross-
sectional area becomes:

‘and the line loads TaB become:

TaB - TaB

When TuB are unit stresses along the edges of the grid.

If, in addition, one replaces the grid distance a by the height of the
“triangle, h-

60

The stress-strain relation (L4.11) and (L.,14) become;
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e = L (g _-3;-T> (4.15)

by superposition.

Comparing equation (4,15) for the bar grid with the Hooke's law rela-
tions for an isotropic plate of unit thickness with Young's modulus
Eo and Poisson's ration v ,

= o -
€y Eo T "V Ty
e = - (r -y ) (L.16)
Yy Eo vy XX
5 -yl 2@ +y)
Exy G Eo Txy

One sees that the equations are equivalent if one sets:

<
i
W=

Now since equations (L4.16) by virtue of their isotropic property are
independent of the choice of x,y axes directions, it follows that the
equivalent relations, (L4.15) also possesses this property. The internal
bar loads, however, may depend upon the choice of axes although the
overall grid elasticity does not. Since the grid is imagined to be
infinitesimal in size, the Hooke's law relations developed for homogen-
eous stress and strain conditions in the large may be shrunk to a point
to express local properties,



A composite structure consisting of a plate with ribs integrally attached
mey now be cosidered,

Assign elastic constants: Eo’ Vo = 1/3 to the plate, and E

=b/h E_,
v, = 1/3 to the grid.

1

4 7 Plate (E_, v = %— )
o,
{ |
a Ribs (E,, v = i )
1 1 3

777777 777

°

Since both materials are isotropic end have equal Poisson's ratibs,
loads mey be applied in any planar direction without trensverse stress
coupling between the materiels,

Designeting the arbitrary axes as a; and oo, One masy solve equations
(4,15) and (b4.16) for the stresses to obtain:

(o) _ o

1 = 5 (e €5p)
l-v

.0 = o (6.n +  €..) \ (4.17)

22 > (€ 11 / .
l-=wv

T (O) = EO €

12 1 +v 12

in the plate.

8i
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And,

SO N N )
1 2 ‘811 7V ey
l -y
E
(1) _
T = S (522 + v ell) {(4,18)
l -
(1) __FH
T2 1+v f12

in the ribs,

The flat plate relations (4,17) and (L.18) may now be extended to a
thin curved shell using the Love-Kirchhoff approximation as is done
in Reference 8 , p. 4o, ul.

E1n Ve Y ey vy t oz (Xg) t Y X,,)

oo ¥V ey TEpp tvegy 2 (Xpy tV Xpy) (k.19)

€10 €10 ¥ 2 X3p

Substituting the stresses into the stress resultant integrals;

Tik

S 1, dz
h ik

ik = 1,2 (4.20)

Mik = f Tix zdz

Where h is the total height and z is measured from a shell surface
such that axial loads produce no resultant moment (neutral surface).*
By such a device one obtains the uncoupled stress-resultant defor-
mation relations:




T)) = Klegytveyy)s Typ = Tpy = K(1-vlegys Tpy = Klepytvey,)
(k,21)
M) = D(Xp *VXpp)s Mpp = Mpy = D(1=v)xyps Myp = Dixyptvxy,)
The quantities K end D are,
K = lszddz=%jEsz
l1-v h ‘ h
(Lh.,22)

1
D S E, zdz S E, zdz
l-wv h J %h J

vhere J = 0, when the integration is in region 0 and J = 1, when the
integration is in the region 1.

These integrals may be evaulated very simply if one observes that

gives an equivalent tee-shaped cross-section of dimensions:

.60

Y

X

Y
&
f

ao
o

b — t Centrod

[ ]

Figure 4.5 - EQUIVALENT TEE-SHAPED CROSS SECTION
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The integrals (L.22) become simply:

K=%EOA, D=2E I (4.23)

8 "o &g

where A is the cross-sectional area shown in figure R}.5 and I__ is
the second moment of area of A asbout the centroidal axis gg. &

Due to the finite size of the grid, certain small errors will occur.
These are due to the following:

(a) Curvature of the shell between the rib Jjoints.

(b) Non-homogeneous stress-strain conditions will result
in increments of bar loads Pl’ P2, P, being trans- -
ferred in shear from the plate between'ghe rib Jjoints.

(¢) Differential bar loads will result in complex stress
distribution at the joints where principal stresses.

change direction.

(d) Neglect of fillet radii.

In addition, the Poisson ratio for the plate may differ from 1/3
and cause coupled stress effects in the transverse direction. For
most metals, however, Poisson's ratio is very close to 1/3.

Bending Rigidity

The equivalent elastic cross-section for computation of D is shown
in figure 4.6 , assuming constent rib width, b,

Siv

Figure 4.6 - EQUIVAIENT BENDING RIGIDITY



Part Area X Ax Ax2 I°
1 t t 21,3
1 t 2(t+d) 2(~t;-o-d) F(“d) 12t
bd 1 b3
2 . 0 0 0 = 5 ¢
I t(1+1°—d- L (t+a) t(t+a)2 L¢3+ R 43
th 2 ¥ 12 h
Define
= bd = &
% % § = 3
s =Lix_ t(t+d) t+ 4
T A 2t(1 + a) 2(1 + a)
3 3
_ 2 _t 2t 2
Ixx—ZAx +£Io-r(l+6) +12(l+a6)
2 2
I =1 -A¥ =1 -t(l+a)tl+6)2
(=14 xxX XX h(l"'a)
3 3
_ @ t 2, % 2
Igg—l+ T(l+‘5) +12(1+a5)
Then
I =7—-—5-t3 (Ba (1+8)2 +(1+a) (1L+as))
ge ].21+0 o o a
And

the bending rigidity, D, is:

U {30 (1 + 8)%+ (1 + a)(1+ as°))
g o1+ a) % e @

(4. 2k)
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Extensional Rigidity

The extensional rigidity, K is obtained from:

K=% E A
K=% Eot(l+ ) (4e25)

Figure 4.7 - DIVISION OF PATTERN FOR WEIGHT CONSIDERATION

Figure 4.7 shows the rib configuration divided into typical rectangles
each with sides of length a and h.

A section through pq is shown in Figure 4.8

P 9

=

—] o |

Figure 4.8 - TYPICAL SECTION THROUGH PANEL



The stresses become:

1% "2 % TH 4 5% (k.27)
in the plate, and
= B = = = % _ IR
0 ==, oy o, = oy = T T (4,28)

in the ribs,

These quantities are to be set equal to the alloweble stresses for
local penel stability and rib crippling stability,
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are proportional to the equivalent area of plate and ribs in the
composite construction.

A
Tll(l) = Tzz(l) ol wd Sl )
14
A
LD, @ P w2
11 22 AV A 2

rib a.re%, A2 = for ribs of constant width, 2

Where A, is thebﬁquivalent plate area, A, = t and A, is the equivalent

From equation (4,6) for the rib stress resultants,

0 (B aqg @) 1 (5, 2p,) = !é p. = c(?)

’
11 22 3 a 1

1

i.e. P, +2P =3P , Py=P
and using equation (L4.6)
(2)
P.=P =p = &5 =%hc(2)

in the ribs

R
in the plate.
(1) _ 1 PR _ t RR
¢ = AL+ A, 2 (1 +a) 2
and A
(2) _ 2 PR _ to PR
¢ = K[+ A, 2 T I+ a) 2



The length of the ribs in spar is 3a, and the volume of rib material
is:
' = 3abd

The volume of skin material is:

V_= sht
S

This gives a total volume of:
Vv = a(3bd + th)

The equivalent weight thickness (i.e. smeared out thickness) is equsal
to this volume divided by the rectangular area.

T = ¥ _ 2(3bd + th)
A eh
T = t(1+ 30) (4,26)

Where, as in previous calculation, o = 9%-. This slightly over-
estimates the weight where the rib areas overlap at the joints vhere
they cross each other but ignores fillet weight,

Rib and Plate Stresses for Pressure Loading of Sphere

For membrane pressure stress conditioms,

fl
o

€11 T €p T € v €10 = 0 Xy

From the exte§51cnal rigidity, K = 2 EA one sees that the line loads

Tll = T22 2 consisting of components

(1) _
Ty " =T

(2) _ (2)
T Ton

(1)

in the plate composite

in the rib composite



Direction of Rib and Plate Stresses

It is a compatibility requirement for composite rib and plate shell
construction that strains in the shell surface coordinate directions
be continuous at the attached surfaces as one traverses a normal to
the shell, In particulasr, the Love-Kirckhoff assumption is that the
strains are linear functions of the normal coordinate while membrane
requirements are that they are constant along the normal coordinate.

Since the plate is subjected, however, to biaxial stresses while the

ribs are stressed uniaxially, a local transition in the strains occur
and the stresses, in general, are different in the two elements away

from the attached surfaces.

Consider a typical segment shown in figure 4.9 where a set of surface
coordinates are arbitrarily assigned parallel to and transverse to a
rib.

Figure 4.9 - TYPICAL SEGMENT SHOWING RIB AND PIATE

Assume, for example, a homogeneous isotropic condition such as would
exist in a sphere subjJected to internal pressure.

In the plate, the strains will be:
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and Hooke's law for stresses in terms of strain is:

_E E
o, = 5 (el + v €2) . o, = S (52 + v el)

l=wv l-wv

‘giving: -

In the ribs, however, one has the strains,
€, = €y €&, S =vVveE T-ve

since the transverse faces of the ribs are stress free (according to
“ the usual approximations).

Thus, in the ribs, one obtains stresses of magnitude:

The plate and rib stresses in the rib direction will then be in the
ratio:

Gi(plate) 1

,:crl(rib) )

’ for v =

!
N jw
(8] [

(This is exactly the ratio of the values previously obtained in
equation 4,27 and 4.28).

One sees that a fundamental difference exists for stresses in ribbed
plates or shells when the composite construction is stressed uni-
axially or biaxially.

It is a consequence of this result that the ribs for 1:1 biaxial
loading, regardless of the rib pattern, can be stressed to only 2/3
of the plate stresses, An optimum construction must then have a
small value of o since
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_ bd rib area
a = —M_T-_—
th skin area

Such ribs will be thin and deep,

The rib and plate are shown separated in Figure 4,10 to illustrate the
local character of the deformation transition between the plate and

rib,

“Z a0

'f \x . s 'P\&u.'\'-o
e T om N e
IS
= m! m m’ ! i -
6 —— | j———
B o L =

Figure L4.10 - LOCAL DEFORMATION BETWEEN RIB AND PLATE

Under load, the points m n move to m' n', Symmetric shear stresses
exist across the attached edge of the rib having zero resultant force.
By St. Venant's principle, the transition stress is of consequence
only in a local region extending approximately one rib thickness into

the rib,.*

As a finsl comment, note that o v 53£LE£§2—
skin area

but does not represent the ratio of rib weight to skin weight in the
dome, This quantity is given by:

is proportioned to

rib weight _ & -t _ t(1+3a)-t
skin weight t %

= 3

*For St. Venant's principle, see "Theory of Elasticity", Timoshenko
and Goodier p. 33 and "Theory of Elasticity", Novozhilov, Dept. of

Comm, Trans. 1961, p. 208,



Thermal Stresses

The thermal stresses in the composite plate-rib shell may easily be
computed from the composite elastic properties.

o+ Wi

o Wi

As a consequence of the l:1 strain field, the solution of reference
may be applied., This solution is:

ti Ei ag
? 1 =-v, Ti E
= T o TTTh (- Ty
S J
1l -~ vy

Where °j is positive for tensile stresses,

When vy and a; are constant,



For the values indicated,

bd

+ = +
o (tETP — ET) .. (T aT)
o] o] L E + bd E o] l1+a
h
The plate stresses are,
El
T2 T T T (T % T
3 T+aTr
=5 E oy ( T+ o - Tp)
o =2 Ea AT (4.29)
P 2 o 1+ a
where
AT = Tr - Tp J
The composite rib stresses are,
E
_ 2
T I (eo ~ % Tr)
2
T + g T
=3 b r
2 h E % ( l+a Tr)
-_ 32 AT
- T 2 h B ao l+a

00



As a check, equilibrium requires that,

tt, o0, =0,
" i
Thus
3 AT bd
to +do, =5 Ea T - (t a —

As required.

The bar locads are related to edge stress resultants by the relation,

T =T =g¢gd-=s 3

o’ Yy r 2a (Pl *+ By)

2

As a consequence of symmetry, Pl = P2 and one obtains,

_ R
ord = = P

The bar stresses are now,

Substituting the value for O

AT 8
o l+aq¢ b /3

0, = = g- %- Ea

(4.30)
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The plate and bar stresses are in the ratio,

o]

—2=_-‘1 =_3-b—d 3
o, 2 ¢ 2 th* ¢

2
-— . + . =
3 a th Ub bd 0

Primary Modes of Failure

General Instability

Since testing of the plastic specimens has demonstrated that satis-
factory correlation exists between modified classical theory for s
complete sphere and for spherical caps with half-opening angles in
the range 33 1/2° ¢ ¢ ¢ 90°, this theory will be employed for calcu-
lation of general instability.

Further, as a consequence of the fact that geodesic stiffening is
described by only three elastic consteants, v = 1/3, D end K, a
simple extension of the theory suffices to predict general stebility,

In reference 20, p. 492, the equations of equilibrium (c) are un=-
changed. The Hooke's law relations, however, are replaced by their
nev values, Thus,

_ Et
Nx = > (ell + v 822) + K (Ell + v 522)
l-v
_ Et
N, = 5 (egp t v ) » K ey +vegy)

l-wv

vhile the expression for M, and M, are already given in terms of D.
This results in & redefinition of the quantities described as o' end

o' ¥
"= D(1 -))2) D
o 2 2
R Et R°K
ot = R(1-1f2) , DR
2Et 2K

¥Primes are used with the Timoshenko notation to avoid confusion with
previous quantities.
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All subsequent calculation of the eigenvalues of ¢' remain unchanged,

and one cobtains:
2
' = - '
' in 2 /(l v) a

neglecting the higher order term 6 v o'.

Thus:
R 2 D
el o = 2,J/(l - V) —
min 2K R2K
_ 4 2
Pnin = 2 / (1 -v7) K
R
2 I

K= (3 L (3a(1+ 62+ (1+a)1+add))

Denoting the critical general instability pressure as Po end substi-
tuting the given values for D end K, one obtains the classical value,

2 1/2
p,= [2E(D) (Bu(1+ 67+ (1+ a1+ a &)
{(k.32)
for v = L
3
where
=E 5=-d.
T %h t
In terms of the equivalent weight t = t(1+30), one has
. 2
3 t
p.= [ E(3)
o 2 R (l+3u)2
(Lk.32)
2 o 1/2
Yy = {3a(1+ 8)°+ (1+ a)(l+ asd”)

10



The above formula reduces to that for monocoque construction when the
rib area approaches zero. In such a case, one has the limiting values

a +>0, § »o0, y+1
Ert=t¢
[o]
' 3 tO 2 to °
P, *|3 E (§-) =2 CE (ﬁ—)
_ _ 1
c = 0,612 for v = 3

According to Huang, (reference 7 )

t °

- [o]
P s2cE (R )

where t}ie buckling coefficient is approximately

¢ =0.8 ¢ = 0,490 forv=%

In order to compare the stiffened weight with mdnocoque vieight for

equal pressure, p_ = c;’ one has,

2 _ 2\° - A
t.'o = (%) ——L_é" to=t -IT%(;-
(1+3a)

Since the weights are proportioned to the thickness,

Stiffened weight _ & _ 1+3a A
- = oe— = welght = n
Monocoque weight to /; ratio
n = 1tdc (4.33)
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Rib Crippling - Ignoring the slight curvature of the ribv,
the allowable elastic crippling stress for a rectangular plate will
be obtained under the conservative assumption that it is free on one
edge and hinged on the other three edges. (See Figure h.ll)

According to reference 31 the critical allowable stress is:

- n2 E b2

[<d>2 kes)
D te———— =) + 0,k25
12(1 - V)a? @

[+
cr

B !
il
bl B d T — AR s
i “
—d ;_1—- O'U_b
——puad] | | f——
- Free ,/’I !
s
—— t—q~b -t et - —
i

Figure 4.11 - LOADED RECTANGULAR PLATE

Substituting
2 1
a = 'zg h , v = §'
b 2 d 2
Oup = 0.693 E (30 [(30 + 0,567]

Equating the actual stress (eq. 4.28) to the allowable stress, one
obtains:

P, R 2 2
o 3 = 06938 (D) [ + 0.567]
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and solving for the critical pressure,

2

2
p =2.08 E(D) (B (1+a) (D +0.567] (k.3)

Panel Buckling - To obtain local panel buckling it will be
assumed that the panels are small enough that they mey be treated as
equilateral triangular plates subjected to uniform compressive edge
loads, This assumption will be Jjustified and amplified, The edges
are assumed free to rotate as a consequence of checkerboard (in-and-
out) panel buckling., The critical allowable stress from reference
31 is:

IS SNSRI

Cl’nccl(c_v- boc‘,\—é

buekle pattern

1

Figure 4.12 - LOADED TRTANGULAR PANEL

Equating this to the actual from eq. (4.27)

1 p2R } 2 2
l1+a 2t




and solving for the critical pressure: (v=1/3)

= 7.80 E (¥) <3’->2<1+ ) (4,35)
p2 - 7- R h a 035

Justification of Plate Buckling Approximation - In an
examination of the experimental results of Krenzke and Kiernan
(reference 17 ) plotted against theoretical curves obtained by
Budiansky, Weinitschke and Thurston (reference3( ) for shallow
spherical shells with clamped edges depicted in figure 4.13 below,
it appears that any plate regime must begin in the steeply rising
portion of the curve to the left,

!

O ) 1 ’ ? 1]
— = &x — Beam, of PM'&‘G (M5+u£02‘n+ E.&ql:/v\
Po classical / )‘ J

.o

I
0.6 | \ 7
. \%///

0.4
0.2
4 8 L 16 26 24 28 32 <
Figure 4,13 PLATE BUCKLING CURVE
1/h L L
2 1
6=[%(l-v)] _5‘_=0.905 L'\,=§

/Rt /Rt

La is the chordal diameter of the spherical cap.

107



In order to put this conjecture on a more rational basis consider a
dimple inscribed in an equilateral triangular grid as a smaller
spherical cap.

i}

‘—I—""—‘“‘“ / 1 _ o av3
5 La = tan 30 ~z

wis

\
/
mb‘

n

Wi
=

tL«————— o P
Then
e=0.905§-—£-=AL, A = 0,603
/Rt /Rt

Suppose the equation of the curve in the "plate instability" region
to be given by the quadratic hyperbola:

. 92 = B = constant

This equation appears to be a reasonable approximation in the steeply
rising portion of the curve where g < L,

Substituting for:

2
6=A-/—;:_-_—, po=2CE(§-)
T
one obtains:
2 3
prp Sy m2cE(@ G-
6 A n Rh
But:
3 2
= PR _ R _ D (L
°F 2% D =3 3% 5 ()



Which is precisely the form of the plate buckling equation,

The conclusion of Krenzke and Kiernman is that stiffening systems
installed at spacings of 6 greater than 2,2 - 2,5, will not increase
the local buckling strength of the shell and masy possibly weasken it
(due to the dip in the curve at 8 = L),

Thermal and Residual Stress Considerations

Thermal stresses and residual stresses are both initial stresses in
internal equilibrium having like effects on dome stability. These
effects are twofold: first, by introducing stresses which cause

local yielding at reduced pressures and second, by introducing internal
strain energy which might be relieved by the buckling deformation end
thus reduce the buckling capsacity.

Local buckling of the ribs and skin are governed by stress differences
between the ribs and the skin. General instability of the dome is
affected by local regions of compression extending over areas comparsble
in size to the dimple area,

Thermal gradients or residual stresses which vary through the dome
thickness, but are otherwise uniform over the dome mid-surface are
associated with a condition of pure moment stress resultants of the
shell, The internal energy due to these moments will not be effected
by primary instability modes of the type where positive changes of
curvature integrated over the shell balance out negative changes of
curvature. The variation in strain energy 6w, is given as: '

8 €13 + MiJ ) Xij)dA

where

-3
[}
o
w
=
i

M
0

and A is the shell mid-surface.

Thus,

fw=M [ L &y,

A =0
Aigy 1
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if

S L 8§y, 40 =0
Ay M
as asserted,

A large number of uniform dimples such as are displayed by the tested
domes should approximately satisfy this condition, so that general
instability should not be affected, provided that the thermal gradients
are fairly uniform over the dome surface.

Common bulkheads which are used on the Saturn S-IV are colder on the
outside convex surface. A waffle design for this dome would have
compressive stress in the relatively warmer ribs and tensile stress in
the colder panels, Due to the high coefficient of conductivity of an
integral metal dome, the temperature difference between the ribs and
the panels will be small in the steady state condition, As a conse-
quence, a design where rib thickness is dictated by fabrication
tolerances will usually have & sufficient margin of rib strength to
accommodate the small additional temperature stresses,

Another factor which enters into off-optimum design where either panels
or ribs become non-critical is the support condition for the critical
element, If the panels do not buckle, edge conditions for the ribs
will become less severe than the assumed "free to rotate" edges,
Similar consideration apply to edge condition for panels when the ribs
do not fail. This fact provides an additional margin to prevent pre-
mature buckling of common domes in the presence of uniform thermal
gradients, Insulstion will also provide support to resist general
instability or panel buckling,

Stresses Due to Hot Spot

Assume that over an angular region B from the apex a uniform temper-
ature rise AT has occurred. A spherical cap of this size may be cut
as 8 free body from the remainder of the dome and provided with a

set of edge shears and moments which replace the internal stresses
across the cut faces, These edge loads may be obtained by the method
of compatible displacements. (See Figure L.1k)



For part .1,

(1)
1p

(1)
$11

(1)
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Tigure 4.14 - FREE BODY OF SPHERICAL CAP
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Where the notation and influence coefficients have been obtained from
reference 22 assuming that the angle is sufficiently large that the
first Geckeler approximation may be used.

For part 2 similarly,

(2) _ (2) _
Glp = 62p =0
.'2 2 .
5 (2) _2 AR sin” 8 5 (2) _ 2\ sin 8
11 Et ’ 12 Et
(@) k3
22 ERt

By summation, the differential displacements are now,

51p = - o R sin 8 AT , 62p =0

5. = L AR sin2 8 5 _ =0
11 Et ’ 12

oo
>
()

22 ©  ERt

Since



one obtains

1 611 L ) sin B

The thermel stresses are seen to be a simple edge shear effect
localized in the vicinity of the thermal Jump across the two sections.

For small values of B, however, the Geckeler solution does not hold
end the edge loads may propagate throughout the entire cap, This may
be expected for values of B ¢ 8°. Since such angles are within the
range of the dimple size, local hot spots should be avoided.

Thus, one may distinguish between local hot spots which enclose small
B angles and have severe effects on general instability, and large
hot regions enclosing large B angles which have a lesser effect on
general instebility., In the latter case, the edge effect may cause

a drop of buckling load similar to that experienced by the torisphere
at the Juncture between the spherical cap and the torus,

Optimization

General Principles of Grid Optimization

Two basic principles of grid optimizetion will be proven under
assumptions of continuity and monotonicity which should be satisfied
for the type of construction proposed here,

The first principle is the equivalence of the following statements;:

I. For a given dame shape and size, the optimum distributiom of
material between ribs and skin is that which maximizes the pressure
for a specified weight of material,

ITI. For a given dome shape and size, the optimum distribution of
material between the ribs and skin is that which minimizes the
weight of material for a specified pressure.

It will be assumed that the collapse pressure p is & continuous
function of the material distribution & between ribs and skin, and
the dome weight w end that it is strietly increasing in w for a
specified §. Due to the continuity of p, for some distribution §,

p will reach & maximum in the closed interval 8g € 8 ¢ 6y where

84 represents all the material concentrated in ribs and §p represents
all the material concentrated in skin,

Consider hypothesis I, and plot collapse pressure p vs. material
distribution § for a specified weight w = Voo

[
X, =0, x, =-"R=20t ., (4.35)

n
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For distribution 60, P reaches its maximum Pye

Now consider hypothesis IT end assume that the specified pressure is Pge
At S8 # 60, P <Hp° for a weight w < Ve

Hence: w > w_to give a pressure p_ for a distribution of material
o o
other than 60.

The second statement to be proved is the "one horse shay" concept of
failure, In essence, the principle states that the optimum construction
is reached when all components collapse simultaneously. For the con-
struction proposed, one considers failure due to general instability,
rib erippling and panel instability between ribs.,

For a given dome weight, ;, assign & weight distribution to the
components:



qa to general instability

%_ to rib crippling

% to panel instability

6 may be assumed normalized such that
60 + 61 + 62 = 1

Consider the collapse pressures Pi» (i =0, 1, 2) for general
instability, rib crippling and panel instability to be continuous
nonotonically increasing functions of Gi and that py is not decreased
by changes in &4, J # 1,

dpi

Designate the least of the three values of pj as (pi)min’

If (py)pin,
is increased by taking increments of § from 6, and 8, and adding them
to 50, thus increasing P, &t the expense of p, and pp. This process
may continue in a continuous manner due to the assumed continuity of
p until all three pressures are equal. At this point (p;) will
have reached its maximum value,

= D, < P, Or Py, the collapse pressure of the structure

min,

Optimum Dimensions

The optimum dimensions are thus obtained from conditions that

pcr = po = pl = p2
i.e
A N 5 1/2
Pop = ¢, E (-}-?-) [3a(1 + 8)°+(1 + a)(1 + a 67)]

2 2
2,088 (B) (D) (1+0) [(D) +o0.567]

(4,36)

2
TR E (B (B (1+0)




where

% T %h o T
i

For & given design, p, E, and R are determined by design requirements
and optimum shape conditions.,

The remaining four parameters b, d, t, h, are apparently restricted
by only the three equations above, which presumably should leave one
free paremeter, This arbitrariness, however, disappears when one
considers that the equation for obtaining panel instability was
obtained under the assumption that the panel was small enough to be
treated as a plate, In order for this to be true, h must be con-
siderably smaller than the dimple diameter observed in the tests.

Solution Of The Optimization Equations

In terms of a non-dimensional pressure,

s =2
P=%

the optimization equations in non~dimensional form are the following:

2 \

- t \
P =c, (R) Y §
) N 22 \
P =c ﬁ'(gﬂ (1 + a) [(;) + c,]

2
s = .k
P=c,= (h) (1 + a)

(4,37 a,b,c)

Where 1/2

[3a(1 + 6)2 + (1 + o)(1 + o 62)]

<
]

o

d

R
i
(3

O
1l
e

(4.38 a,b,c)
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and

0.8 x 1.22474 c 2.08187

0
L[}

= 0.,566667

ol
fl

T.L0220

0
n

C_is the upper limit value 0.8 x 2 x O.612§T and may be lowered by
réplacement by some reduced coefficient, co .

These equations are restricted by the plate approximation requirement
that

h g2 /Rt
In order to see the effect of this paremeter, set

w2 = ¢ Rt , P (4,39)

A

and consider the solution for various values of ¢. Lowér bounds of
€ will exist due to fabrication limitations.

Now for a fixed e, equations (kL.37 a,b,c,) and (L4,39) represent four
non-linear equations in four unknowns b, d, t, and he A unique
non-dimensional positive real sclution for these varisbles will be
obtained by elimination in terms of p and ¢.

Thus:

Substitute eq. (4.38¢c) and (L4.39) into (L.37b)

2 2
- t b §°t -
P=c R 2 2 (1 + a) (Eﬁ_ + cl) (4,k0)

Substitute (4.39) into (L4,37c)

c 2
P=2(@ (1+a (hak1)



Equate (L4.40) and (L.L41)

o Lo (2.2t
1 62 t2 eR 1 €
4,2 &
Multiply by (i]-) o and use eq, (L.38b)
1
o2 (é.z_t. +3.) = f?_f.z_ £ &
eR 1 cl € R h2
Use (L4,38¢c) and (4.39)
N
252_‘?.+c)=c26 (1)2
¢ \eR 1", 2 'R
1 €
t
The quedratic in B is:
2 cg 2 c. 5. € 2
R QP - W T S o
R 02 52 R (] s
Define the quantities:
- 2 ?
c.€ c, ¢, € | :
c = L ’ c = ————-l 1 (h'ha)
3 ¢ I c
2
The quadratic in % becomes:
2 2 2
t _ [ a-X a
8 8
Solving eq. (L.41) for ';" ’
L. R e . g3
R l+a ¢ #(p, a) (he k)
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Substitute (L4,4k) into (4. 43)

f2=C"‘a_f"’Ch£E, i.e.

2 L a2 62 - ¢, a2 =0

Solving the quadratic in 62,

2 / 4 ¢
2 _«a 2 L . 2
§< = 5F [c3 + c3 + S ], since § > O

a

Substituting back for f(p, a) ,

2 /¢ b e
2 _4a /2 1+a 2 L
=3 ,/s 5 leg+ [og™+ 3 ]

Again from eq. (4,37a) and (kL,41)

_ - e c2 2
BreTis o T Y m(1rw (B
2 o
Expending eq. (4.38a) for 72
. c 2
(1+a)? () =1+baral6s+ s (h+a)l
o

i.e.

52 (b +a) +66-ala) =0

where ,

(L.k5)

(L.L6)



120

Again solving the quadratic in 6.

/

=-3+~

s

L+ a

9 + (b + a) gla) (4. 47)

since § > 0 as before,

Eliminating 6 from (4L.U45) and (L.47)

gi K fg l+a fc + N/C 2, b °) ] _[=3+ ~[9 + (b + a) g(a)]z
2 € 5 - 3 3 C!2 o (h + a)2

and solving for p,

[ 2 2 /% d/ o b °n'{\2
) b at (b + a) E—-(l + a) {c3 + cq + a2 | {
5= 4 — (4.48)
, 2[-3+J/9 + (b +a) gla) ]
{ /
where

c, 2 2
g(a) = (cee) (l : a) - 1 ; ha

o)



Off=Optimum Design

Due to constructional limitations, the theoretical optimum often
cannot be realized end off-optimum designs must be obtained. The set
of equations,

2 1/2
P o= e (B [301+ 8% (1+a)1+as)] )
2 2

B, @@ o) +E) ST
a.,b,C

Fee, B (1w ]

P = %R g o

2

"= ¢Rt, €5k (4.50)

with
a = 2, s=8 (k.51)

represent the solution for b, d, t, h, for choosen values of €,
Any additional geometric requirements must be obtained at the
expense of satisfying these relations. For each such constraint
relation, one of the equations must be discarded., The P or h
associated with the discarded equation must be not less than the
design P or h.

Generally one wishes to retain equation (4,hk9a) for general
instability in the interest of efficiency. At the same time,
eq. (4.50) is usually necessary to hold the panel size from
becoming too small. Thus, one may wish to dispense with eq.
(L.49b) or (L.kge),

Solution for Ribs of Non-Critical Width

If the dome is to be of integral construction, the panels must be
milled or etched out. This usually results in a minimum rib width
vhich is in excess of optimum requirements so that ¥ obtained from
eq. (4.49b) will exceed the design pressure.

21



122

Combining eq. (k4.49a) and (L.50),
2

o]
Poo, (P A +a=2( 1+
2 -
(L) = = B
R c, 1l+a

Substituting (4,41) into eq. (L.L9a)

c € - 1/2
B = ;:— T2 (31 + 6% (14 a)(1 + @ 6]

Squaring and rearranging;

3a(1+ 6)2 + (L+ a)(1+aé’)= (2 (1+a)

Expanding,

c 2
1+ha+6a5+ha62+a252=(c—2;) (l+2a+a2)
(o]

(L.52)

(k.53)

This is a quadratic requirement relating o and §. It is the same

relation between o and § which has been previously developed

(eq. hc)'r{)o

From eq. (4.39) and (k,51),

. b, 2 _ 12 ¢°
a h Iy a = ERt
2
t _ 1 (bs
ﬁ - € (ROL)
Substitute (L.,54) into (4.52),
" 3 _ _ 3 1/h
(28 = B B (14 )/t =B (B
Ro ¢, 1+a ° a o b c,

(bo5k)



Define

, 1/
B= & (&5 (4.55)

then,

6 = ?-_-EQ;I7E (4,56)

l+ ¢

From eq., (L,u7)

L + o) gla) (4.57)

+ (
c a L + a

Eq. (4.57) establishes the relation between B and o to provide the
solution,

One uses (4,57) to find B8 from R, b, and p, then finds o from
(4,57)y 6 from (4,56), Thus, ell quentities may be determined,

0f course, one must check to assure that the critical pressure for
rib crippling associated with the discarded equation is at least
-equal to the design pressure. The easiest way to do this is to
compare the p/E value of the design with that given in the table.
One should have:

(2) < (B
design table

Other Boundary Conditions for Plate Buckling

For off-optimum designs with non-critical ribs, it appears reasonable
to assume a clamped boundary condition for the panels if all panels
buckle inward. This condition requires less distortion of the panel
mid-surface for snap=-through.

Both hinged and clamped boundaries sre treated in the plate buckling
summaries of Gerard and Becker (referencel9). Their allowable
stresses are given in the form:

2 2
k1" B t
=2 2 (2

cr 12(1 - v2) a



Since: ‘ a.=2— h ,
3
this mey be written,
_ k1 E (302

0 -
T 16(1 ‘,\’2) h
For hinged end clamped edges, their values of k are:

k(hinged) = 5.00

k(clamped) = 12,2 (from curve)

Their hinged values differ slightly from that of Timoshenko and Gere
(reference 20 ) and Pfluger (reference 31) who both give

L w2 E (202
12(1 = v2) B

g
cr

The ratio between the hinged values is:
°cr(G‘ & B.)

Assuming the clamped values of Gerard and Becker as either correct
or conservative, one cbtains:

2 2
_12.2 1 E %t
ocr(clamped) === —_1 - v2 (h)

2

t

8.45 E (3)
for v =-§-

Equating the actual panel stress to the allowable,

2
.——l— LR. = E
1 +a 2t 8.45 E (h)
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one obtains the critical pressure

t ,t 2
p2(clamped = 16,90 7 (K (1 + a)

and the constant c2 is

16.90

(24
1]

which is an increase of L@%Q-

7 = 2,29 over the hinged value,

The effect of the increase in p. on the design will be to give
thinner panels and heavier ribs for a given grid size, thus
inereasing general stability and resulting in lower values of n,
the weight ratio.

The Jump in Ps associated with the jump in ¢, from T.4 to 16.9
violates the continuity assumption in the proof of the "one-horse
shay" concept of failure associating Sos 814 and 85 with Do, Dy,
and pps This discontinuous increase in Py may result in a lighter
weight dome for the condition:

P, = Py(clamped) = p

o} cr ? pl>p

than for the condition

P, =P, = p2(h1nged) = Pop

12
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CHAPTER V - EXPERIMENTAL DATA

Plastic Model Testing

Model Material

The plastic materisl used for the fabrication of the models tested in this
program was "rigid-vinyl" menufactured by Union Carbide Company under the
trademark "Bakelite." The material was purchased from Cadillac Plastic

and Chemicel Company in the form of planished sheets. The 21l x 51 sheets
came in 13 standard thicknesses from 0.010 to 0.125 inches. They can be
obtained in transparent, translucent, and opaque in various colors or clear.
The surface finishes are pressed, polished, or matte, or any desired combina-
tion thereof. This plasticized poly-vinyl chloride material can be formed
at 160°F (versus 275°F for umplasticized PVC). It is a mixture of 86% vinyl
chloride and 14% vinyl acetate. The vinyl acetate is used as an internal
plasticizer and acts on the monomer to soften it, to reduce its forming
temperature, and in genersl, provide a more useful material.

- Material Property Tests -To establish basic material properties of
the polyvinyl chloride plastic material, the following tests were conducted
at the start of the progrem:

Modulus of Elasticity -~ The modulus of elasticity of the material
was determined in the direction of rolling and perpendicular to the direction
of rolling by standard tensile coupons, 6 inches in length and 1/2 inch in
width, cut from sheets of different thickness. The coupons were tested using
a Baldwin Universal testing machine with a 2-inch gage length extensometer
clamped to the specimen. Continuous load-deflection data was autogrephically
recorded to fracture. The variation in Young's Modulus versus thickness is
shown in Figure 5.1. The results show that the average modulus is 465,000 psi
with a meximum deviation from the mean of 3.5%, that the material has nearly
isotropic properties and the modulus of elasticity is somewhat dependent
upon the thickness variation. A typical stress-strain curve is shown in
Figure 5.2.

Strain Rate and Creep - Tests were conducted to measure the
effect of strain rate and sensitivity to creep. Strain rates varying from
.02 to .10 in/in/min. showed no discernable difference in the modulus of
elasticity. Reference 22, however, showed that for loading rates > .20
in/in/min. that the material is rate dependent. There were no detectable
creep effects on the material when constant loads below the proportional
limit were maintained for several minutes.
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Poisson's Ratio - Several tests were conducted to establish
Poisson's ratio in the elastic region. The results showed this velue to
be 0.37 with a minimum of scatter.

The Poisson's ratio and the high ratio of elastic limit stress to modulus
of elasticity are two explicit advantages. The Poisson's ratio approaches
thet of many metals. We, therefore, can achieve the same stress and
strain distribution in the model and prototype. The high ratio of elas-
tic limit stress to modulus of elasticity allows buckling to oceur in the
elastic range which makes possible the repeatability of testing one model.
Another advantage in the use of the rigid vinyl material is the ease in
cementing it to itself. Tetrahydrofuran, methyl ethlketone (MEK) were
reasonably satisfactory solvent cements for this material, forming bonds
up to 50 per cent of the strength of the original material. It has been
recommended that when many joints are made that sufficient time should

be allowed before testing in order to let the cement cure adequately.

The softening process of the solvent type cement locally lowers the mo-
dulus of elasticity.

Fabrication of Domes

The shells of the basic monocoque dome configurations and the stiffened
dome configurations were fabricated using the same technique. For the
stiffened dome configurations, the appropriate ribs were bonded on the
concave surface of the shell.

The seven dome shapes fabricated in this study had a constant base dia-
meter of 16 inches. The configurations are shown in Teble 5.1.

Table 5.1
Dome Configuration a/b-Base Radius To Dome Height Ratio
Spherical 4.78; 3.33; 2.0; 1.0
Ellipsiodal 3.3; 2.0
Torispherical ‘ 2.0

The individual molds were designed tc fit a standard base plate mounted
on a 14 in. diameter lathe faceplate. The base plate served as the hold-
ing fixture when turning the mold and dome, and the mold's vacuum mani-
fold cover. The formed shell was held in contact with the mold's
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concave surface with vacuum during the machining of the inside radius

of the plastic dome shell. All the aluminum dome molds and domes were
machined on the same lathe and base plate, thus eliminating most of the
concentricity problems and reducing the cost of multiple tooling. The
female molds were machined from 6061-T651 aluminum plate. Each 20 in.
diameter mold was turned on an 18 in. Monarch Lathe using a True-Trace
hydraulic tracing attachment. The tracing attachment follows a template
which duplicates the desired mold cavity contour. The spherical contour
template (a/b) = 3.33 can be seen in the machining setup in Figure 5.3.
(Note template in horizontal plane at right of center in the photograph.)
Figure 5.4 shows a completed spherical mold and plastic dome with a
radius to height, a/b of 3.33. The final step in the preparation of the
mold is the through-drilling of many small holes (#T0 to #80) normal

to the contoured surface, but which are not visible in the photograph.
These holes are part of the vacuum manifold for drawing the plastic into
the cavity during vacuum forming and during machining the plastic dome

to the required wall thickness. In the forming of the shallow domes

air would become trapped under the plastic between the holes. This was
eliminated by scribing rings and cross hatches on the surface of the
mold. As mentioned before, the only tooling necessary to make plastic
domes of one particular shape was the female mold and its corresponding
tracing template. By changing the dlameter of the tracing stylus to
compensate for the dome thickness, it was possible to machine the inside
surface of the plastic dome using the same template thst was used for

the mold surface. If two templates were used, the shell wall thickness
variations would have been compounded by template differences, temperature
changes, and cutting tool wear. This would also mean that for every shell
shape with a different wall thickness, an internal surface template would
also have been required.

The forming method used was vacuum forming, or negative pressure forming,
with an additional amount of external pressure. The external pressure
was added to minimize the dimensionsl difference between the mold and
plastic dome caused by the difference of their coefficients of expansion
during the transition temperature and to help form the rigid vinyl over
the sharp radii.

A sheet of rigid-vinyl was clamped on the mold with a clamping ring
(Figure 5.5). The external pressure plate was then bolted to the clamp-
ing ring (an O ring is used for the pressure seal). The whole assembly
was placed in an oven mechanically connected to pressure and vacuum.
After connecting the vacuum and external pressure lines, the temperature
in the oven was raised to 240OF. The mold assembly was soaked at this
temperature for a minimum of six hours. After soaking, the vacuum pump
was turned on and the rigid-vinyl sheet was pulled down to conform to the
mold cavity. When the plastic sheet pulled down, the space above it drew
in oven air at 2LOOF into the space above the plastic sheet. This was
done to eliminate cold spots while forming. While the negative pressure
caused by the vacuum was holding down the plastic sheet, the additional
external pressure was applied with factory air regulated to 15 psig. The
oven heat was turned off, and the door opened so that the whole mold as-
sembly could cool down to room temperature.
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FIGURE 5.4 COMPLETED SPHERICAL MOLD AND PLASTIC DOME
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After the assembly had cooled to room temperature, the base plate was
removed from the back of the mold and the mold was installed on the
lathe base plate. The plastic dome was held tight to the mold cavity
by vacuum while turning the intermal surface of the vacuum formed dome.
A Shrader rotating pressure joint was used between the rotating lathe
spindle and the vacuum pump line.

The contraction of the plastic away from the aluminum mold was slight,
but when the vacuum had been applied under the plastic dome, it was
stretched slightly to conform to the mold cavity. In order to eliminate
this stretching while machining, the plastic dome was parted from the
excess clamping material. After parting, the edge was taped with a
plastic coated fabric tape (Tuck) to restore the full 28-inch of vacuum
used while turning the plastic dome to the required wall thickness.
Soluable oil collant was used while turning the rigid vinyl (PVC). This
material turns well, but it should not be heated excessively. Tungsten
carbid cutting tools were used to reduce wear since the accuracy of the
dome wall was dependent upon the relationship of the radius of the cut-
ting tool to the radius of the tracing stylus. The duplication of the
hydraulic tracing attachment depends upon the conformity of the radius
of the cutting tool and stylus.

When machining the plastic dome using the same template which was used
to machine the aluminum mold cavity, the thickness dimension of the
plastic dome had to be added to the radius of the stylus used to cut the
mold cavity. The finished dome was then inspected for wall thickness
variations. A dial indicator was mounted above & l-inch diameter steel
ball on an arm long enough to provide room for the indicator to reach
the center of the 16-inch diameter plastic dome. For the stiffened
domes, the ribs were routed from the same sheet material as the dome and
cemented to the shell using Cadco No. 201 Solvent Cement. Figure 5.6
shows the small rectangular blocks thet were used to position the ribs
while cementing.

Test Set-Up

The testing fixture for the finished plastic dome models is shown in
Figure 5.7. The dome shells were cemented to a stiff plexiglass ring.

A 1/} inch deep groove was cut into the ring, the shell placed into the
groove, and this groove filled with Hysol 2039 epoxy cement with Hardner
"C". The epoxy cement cured at room temperature. All of the shells made
with an extra l/h inch for the epoxy cementing. This stiff ring, l-inch
thick by 2 Inches wide, provided the fixed edge support for the dome
model. The dome ring assembly is then clamped to a heavy Plexiglas base
with provisions for pumping a vacuum from beneath the dome. For the
monocoque and stiffened domes, a wooden block rests between the dome's
inner surface and the base plate of the Plexiglas test fixture. The
back up block protects the specimen from complete collapse so that tests
can be repeated.



Test Procedure - Room Temperature

The test setup for the monocoque dome is shown in Figure 5.7a. The pressuri-
zation of the dome was accomplished by producing & negative pressure under
the dome with a vacuum pump. The vacuum pressure was regulated with a Cono-
flow Type JH-20 vecuunm regulator. The pressure was monitored and recorded
from a O to 15 psia Statham pressure transducer. The output of the pressure
transducer was conducted to the balance bridge and then to the X-axis of the
four Mosely X-Y recorders (two double pen).

The deflection of the dome was monitored with six differential transformer

displacenment transducers held in place using & magnetic stand on the steel

surface plate used to assemble the complete test setup. With this method,

simltaneous plots were made of the test pressure versus deflections during
a dome test.

The deflection transducers were calibrated before each test using a depth
micrometer and reading the output on the X-Y recorders. This record was put
on the same sheet of graph paper that was used during the test. The pressure
channels were calibrated by shutting a known resistance across one leg of
the transducer balance bridge. After calibrating the vacuum pump was turned
on and the vacuum surge tank was evacuated to approximately 13 psia.

Test Procedure - Thermal Gradient

For the thermal gradient test ice was used as the cooling agent and water as
the pressure medium. The test setup i1s shown schematically in Figure 5.8
and a photograph of it is Figure 5.9. Copper-Constantan Thermocouples were
cemented to the model with "Eastman 910" cement. The standard thermocouple
circuit was used with a switch introduced so only one reference thermocouple
and.only one voltmeter was used. Ice was first put into the lower cylinder
and then the large upper ring holding the test specimen was bolted over the
cylinder. Tsp water was fed into the cylinder from the bottom and air bled
from the top. During the soak period of two hours, the deflection trans-
ducers were put in place and periodic readings taken from the thermocouples.
The pressure and deflection transducers were calibrated in the same manner
as explained for the room temperature test procedure. Immediately before
testing, a final temperature was recorded.

Monocoque Test Results

A total of seven monocoque domes were fabricated and tested in the experi-
mental phase. The summary of test results are shown in Table 1.l and a
photograph of the buckling patterns are dipicted in Figure 1.3.

Spherical Domes - Four spherical shapes were tested that had base
radii to height ratios of 1:00, 2:00, 3.33 and 4.78 with a constant base
radius of sixteen inches. Table 5.2 shows the measured thickness normal to
the dome surface at the various locations. The buckling coefficient C is
computed from the equation:

2
R

)
ZE t

¢ = (5.1)
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where
. E = h65,000 psi

Figure 5.10 shows the location of the displacement transducers on the
appropriate shells. Figures 5.11 and 5.12 are plots of the radial deflec-
tion at failure transcribed from the autographic records.

Two effects of the test results deserve special mention. The first is the
consistently high buckling coefficient for the range of R/t values of
245 to 345. These high buckling coefficients are a consequence of the
minimization of imperfections and residual stresses and uniformity of
the boundary conditions. The second effect is the remarkably complete

buckle patterns over the spherical surfaces. In all tests, the formation

of the pattern appeared to be instantaneous and occurred with a loud
"bang." However, the backup block may have forced this condition. On
the subsequent tests performed on the specimens, the initial collapse
pressures were duplicated after a short relaxation time.

Ellipsoidal Domes - Two ellipsoidal domes were fabricated and
tested with a/b ratias of 2.00 and 3.33. Table 5.3 shows the recorded
thicknesses normal to the dome surface at the indicated locations. The
buckling coefficients were computed using the theory of Mushtari-Galimov
(Reference 8) where the maximum radius of curvature is substituted for
(R) in equation (5.1). These coefficients are plotted in Figure 5.16 and
compared with previous experimental data. The high buckling coefficients
attained are indicative of the excellent fsbrication and testing techniques
employed in the study. Figures 5.13 and5.14 are plots of the radial
deflection at the buckling pressure.

Torispherical Domes - A single torispherical dome was tested
with a spherical radius of 11.50 inches and a knuckle radius of 1.7l
inches with an a/b = 2,00, The buckling coefficient for the torispherical
dome was initially based upon the substitution of the spherical radius
into equation (5.1). This assumption was shown to be incorrect by the
visual observation of the buckle pattern at failure. A number of circum-
ferential buckles occurred at the junction of the spherical cap and the
torus, in the region of meximum discontinuity stress. This high discon-
tinuity stress is thought to be the prime reason forthe low experimental
buckling coefficient. Figure 5.15 is a plot of the radial deflection
at the failing pressure.




FIGURE 5.6 TYPICAL HOLDING BLOCK ARRANGEMENT
FOR STIFFENED DOMES
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Table 5.2

T.HICKEESS BEASURBJHTS FOR MONOCOQUE SPHERICAL DOMES

- IQ
i Ik
/ "
{ 7 I
| 31, 26 /‘l,y Y
/ \
/ \

pohkngd

17

N

[ X Ve
THICKNESS - INCHES
ng.w d-Inches #1-8 #2-8 #3-8 #4-8
a/b =20 |a/db=13.33/a/b=1.0la/b =478
1 0 .0LOS .0500 .0288 .0560
2 2.0 .0LOS .0lg0 .0285 .0559
3 2.0 .0405 .0590 .0285 .0559
N 2.0 .0L05 .0h8kL .0285 .0560
5 2.0 .0LO5 .0l80 .0282 .0560
6 4.0 .0kok .oh82 .0280 .0560
T k.0 .Obok .0kg2 .0280 .0561
8 k.0 .0k05 .0L90 .0280 .0563
9 k.0 .0ko5 .0500 .0280 .0561
10 6.0 .0kos .0500 .0283 .0560
11 6.0 .0ko5 .0490 .0282 .0561
12 6.0 .0405 .0490 .0282 .0561
13 6.0 .0L06 .0h82 .0275 .0560
1k 8.0 .0k15 .O48L 0275 .0563
15 8.0 .0lb1s .0L84 .0275 -.0565
16 8.0 .0l15 .04g0 .0272 .0566
17 % 8.0 .| .ok8 .0500 .0273 .0565
18 9.25 10.5| .0OW1s .0270
19 9.25 10.5| .Okik .0269
20 9.25 10.5| .0k15 .0270
21 9.25 10.5| .0k18 .0270
22 12.6 .0268
23 12.6 .0269
2l 12.6 .0269
25 12.6 .0268
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Lo

c 1-8 2-8 3-8 48 L.E 5-E 6-T
a 1.5 1.50 2.0 2.0 2.0 2.0 2.0
b 1.5 1.50 2.0 1.0 2.0 2.0 2.0
¢ 1.5 1.50 2.0 1.0 2.0 2.0 2.0
a 1.5 1.50 2.0 1.0 2.0 1.0 2.0
e 1.5 1.50 2.0 1.0 1.0 1.0 1.0

FIGURE 5.10

LOCATION OF DISPIACEMENT TRANSDUCERS FOR MONOCOQUE DOMES #1-8, #2-S, #3-S,

#l""s: #5-E, #6"E: #7-T.
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Scale - 1.0" = ,010" Deflection
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Figure 5.13 - RADIAL DEFLECTION AT BUCKLING PRESSURE ELLIPSOIDAL DOME - #5-E



;14!

Apex Scale - 1.0" = .010" Deflection

Zero Pressure

- Buckling Pressure

Figure 5.14 -RADIAL DEFLECTION AT BUCKLING PRESSURE ELLIPSOIDAL DOME - #6 E
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Scale - 1.0" = ,010" Deflection

Figure 5.15 - RADIAL DEFLECTION AT BUCKLING PRESSURE TORISPHERICAL DOME - #1-7
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8tiffened Spherical Domes - Room Temperature

A total of ten stiffened spherical dome configuration were fabricated
and tested to arrive at an optimm stiffened dome arrangement. Stif-
fening configurations tested were:

Meridionel Stiffened

Circumferential Stiffened

Combined Meridional and Circumferential Stiffened
Square=Grid Stiffened

Geodeslic Stiffened

Table 5.4 shows the measured thicknesses of the shell normsl to the dome
surface. Figures 5.17 - 5.20 show the location of the displecement trens-
ducers and Figures 5.21 - 5.24 are plots of the resulting deformation of

the domes at the faillng pressure. The summary of the experimental re-
sults are shown in Teble 1.2 and Figure 1.5.

Meridional Stiffened Domes « Four meridionslly stiffened domes
(#1-M, #2-M, F#3-M, F#4-M) with 6, 26, 26, and 38 ribs respectively were
fabricated therefore with modifications, it was used for the number 3 Meri-
dionsl dome. The modification was the changing of the rectangular ridb to a
tee rib. The geometry and experimental results are shown in the table
below.

No of

R d b t < Ribs p s T g-
t, IM| 20 | 25 o191 | 0349 6 141 | 03711 88
b_ﬁ;ﬁl{ 2M | 20 | 30 | o191} 0349 | 26 209 | 0402 | 112
?'—T 3M ] 20 f| 'Zdz 'Z}Zi 0349 | 26 287 | 0424 | 138
T g \
d 4 M1 20 [ 30 | 0239 0272 | 38 169 § .0343 | 124

i
L

Meridionul Dome - #1-M - The intent of this arrangement
was to verify a theory predicting that the radius of the largest inscribed
circular plate within the bounds of the radial stiffeners define the
allowable pressure for panel instability. Tomreclude that primary failure
occurs by panel instability, rather than by rib instability, only six
meridional ribs were used in this configuration. The axisymmetric buckle
pattern at failure, clearly demonstrates that the buckling mode is by
panel instability.

Meridional Dome -~ #2-M- The objective of testing #2-M was

two fold:
1. To determine the allowable buckling stability of the rib.

15
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2. To show an improvement of the buckling pressure of a
meridionally stiffened dome compared to a monocoque
dome having the same weight.

accomplish the first objective it was necessary to select an off- :
optimum condition where rib fallure occurred prior to panel instability.
To achleve the second objective, the non-dimensional parameter A was
selected such that A ) 3. From the theory in Chepter III the stiffening
rattern is determined as follows:

Let 20 inches

23935
4.8
0.37
465 x 105
«035 inches

. o
¢+ H< oW

(L O I

assume A = 1.5

from equation 3.5 where A is shown to be

ELZ (1-\/2):] 1/l+ r

substituting into the above equation for A ,V , R, t, end solv:l.ng for
the inscribed panel radius r gives

= 0.70

or V=% = 2F - .05

from Figure 3.1 the number of the ribs required to provide this ratio is
selected as 26. ,

The predicted panel allowable from equation 3.10 is given as

o o 2:b me
P (1-v2) R r°

Substituting the proper values into the sbove equation results in

P, = 5.7 psi

Equeating pp- =D, where from equation 3.15

2
P, BIE (x°-1)

rR3



where
B =5.0and k2 =131 for & = 23°35!
Solving for I, results in

I =106 x 10-6
r

To assure that rib failure occurs prior to penel instability the moment
of inertia of the rib will be made considerebly less than that required
for simultaneous failure.

Arbitrarily the moment of inertia for the rib is selected as 0.4 Ir

that is

I = A x 106 x 10” 6

6. 43.0 x 10

To satisfy this requirement for IR
ILet 4 = n30 H b = 00191

¢ d therefore from the previous
4 equation p,. = 2.3 psi (pre-
bl b dicted failure of rib)

Meridional Dome #3-M - The objective of testing #3-M was to
increase the buckling stability of the ribs such that panel and rid fail-
ure occur simultaneously.

Specimen - Meridionel Dome #2 was used as the test
specimen to meet this objective. The ribs were reinforced by the addi-
tion of a cap extending from thebase to eapproximately 5/8 of thearigi-
nal rib length. This is shown in the sketch below.

o T T T e

= |
*\\ Reinforcement

where d'= .0191
b'= .250

and I is computed to be 110 x 10~6
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TABIE 5.4

THICKNESS MEASUREMENTS FOR SHELLS FOR THE STIFFENING CONFIGURATIONS

POINT THICKNESS
NUMBER #1-G #2-G 3-G 1M #1-Mc fo-M #3-M| #u-M 1-C #1-s
a/b = 4.78a/b = 4.78|a =4 78R/ L4.78la/b =L4.78|a/b = 2.0/a/b = 4.78

1 o] .0h69 .048s5 .0297 .0356 .0349 .0270 . 0266 .0579
2 2.0 ok72 .ol82 .0298 .0352 .0352 .0273 .0262 .0581
3 2.0 LOLTO .Ou8h4 .0298 .0352 .0352 .0273 .0261 .0581
L 2.0 0470 .0L82 .0298 .0352 .0352 .0273 0261 .0581
5 2.0 LOhTL .0k83 .0298 .0352 .0352 0274 0261 .0580
6 k.0 LOlT73 LOUT5 .0295 .0349 .03k9 .0272 .0263 LO5TT
T k.0 LolTh LOUTT .0295 .0349 .0348 L0271 .0263 LO5TT
8 4,0 .ObTh LOlTh 0294 .0348 .0349 .0273 .0264 05T7
9 k.0 OUTh 0475 .0294 .0348 .03k9 .0273 . 0264 .0576
10 6.0 0475 .O4TT .0297 .0350 .0350 .0272 .0257 .057k
1 6.0 .OUTS LOUTT .0297 .0349 .0350 0271 .0257 .0575
12 6.0 OkTT o475 .0296 .0349 .0349 L0273 0257 .O57Th
13 6.0 LOUTT .OUTS .0297 .0348 .0349 0275 0257 .O5Th

1k 8.0 LOUTT .0k80 .0294 .0346 L0347 .0269 .0256 .05T1

15 8.0 LOuTh .0k80 .0293 .0348 .0346 L0267 .0256 L0573

16 8.0 JOUTT .0k80 .0292 .0345 .0345 0271 .0256 .05T3

17 8.0 LOUTT .0li80 .0293 .0345 .0345 .0273 .0256 .05T71
18 9.25 .0248

19 9.25 .0248

20 9.25 0247

21 9.25 .02k9




#1-G, #2-6  GEODISIC DOMES

" #3-G GEODISIC DOME

FIGURE 5.17

LOCATION OF DISPIACEMENT TRANSDUCERS ON #1-G, #2-G AND #3-G
GEODESIC DOMES
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#1-C CIRCUMFERENTIAL DOME

#1-MC MERDIONAL-CIRCUMFERENTIAL DOME
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FIGURE 5.18

LOCATION OF DISPLACEMENT TRANSDUCERS ON #1-C and #1-MC CIRCUMFERENTIAL AND
MERIDIONAL-CIRCUMFERENTIAL DOMES




#1-M MERIDIONAIL DOME

#2-M, #3-M MERIDIONAI DOMES
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FIGURE 5.19
LOCATION OF DISPIACEMENT TRANSDUCERS ON #1-M, #2-M AND #3-M MERIDIONAL DOMES
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F#4-M MERIDIONAL DOME

FIGURE 5.20

LOCATION OF DISPIACEMENT TRANSDUCERS ON #4-M AND #1-SG - MERIDIONAL AND
SQUARE STIFFENED DOMES
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Figure 5.21

-———~—-ZEIS_EEEEfEfi-;~“\-“h Scale: 1.00" = .020" Deflection

Radial Deflection at Buckling Pressure for Geodesic Stiffened Domes
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Seale: 1.00" = .010" Deflection

Circumferential Dome
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Figure 5.22 - Radial Deflection at Buckling Pressure For
Circumferential and Circumferential - Meridional Stiffened Domes
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Figure 5.23 -

Scale: 1.00" = .010" Deflection

Zero Pressure

Radial Deflection at Buckling Deflection at Buckling Pressure
for Meridionally Stiffened Domes

.o #1-M
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Figure 5.24 -

Scale: 1.00" = .020" Deflection

Radial Deflection at Buckling Pressure
For Square-Grid Stiffened Dome



The above moment of inertia satisfies the requirement of sufficient rib
stiffness such that panel and rib failure occur simultaneously as calcu-
lated for meridional dome #1.

The predicted failing pressure is therefore

= 5.75 psi

Meridional Dome #4 - The objective of tes+1ng #4-M wes to
optimize the dome configurestion for a given ratio of (t = .10

From Figure 3.3 for a value of ( ) = .10 the optimum number of ribs

required is given as 38 ribs, for an efficiency parameter of 7] = 11.05.

From Figure 3.1 for N = 38, () = .02k
the inscribed radius is therefore gomputed as
=RY =20 x .024 = .48 inches
From equation 3.46 where the allowable panel stebility is given as

ol E 3
P SITU R o2

letting t = .0273 and substituting appropriate values of E, R and r
into the above equation results in

= 5.88 psi

From equation the necessary rib moment of inertia is expressed as

I, =RRIR’ here B = 5.0
R m—(k_'l) where B = 5,

Ietting pp = Pg and solving for IR gives

IR =75 x 10-6

Because of fabrication limitations it was not vossible to meet this condi-

tion of Ip end still satisfy the condition of (%)2 = .10.
The IR obtained for this configurstion is

IR =5k x 10'6
For this value of IR

Pp = L.25 psi
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Circumferential Stiffened Domes - A circumferentially stiffened
spherical cap with ana/b = 2.0 was tested to a buckling pressure of
4.09 psi. This is approximately 92% of the failing pressure that would
be expected for a monocoque dome having the seme equivalent weight.
While the result was considerably higher thean the previous experimental
values, it clearly demonstrates that a circumferential stiffening arrange-
ment is not expected to be a structurally efficient bulkhead design.
The buckle pattern at failure, shows the buckles are aligned in the
circumferential direction thus indicating that the primary failure was
sttributed to peanel instability between the circumferential stiffeners.
Although extensive rib failures occurred when the specimen collapsed
against the restraining block, & secondary test of the failed shell resulted
in a monocoque buckling coefficient that was within 3% of the previously
reported unstiffened shell results. The geometry and test result is
shown in the proceeding teble. :

——\

f No of -~
- R d ‘ b ty Ribs I:,sFaiI t % !
ts 4
i o
b l-_-—_f 10 VARYING 0260 10 4.09 .0390 92
— SEE THELE
|75

Specimen Degign - The following analysis is based upon-the
work developed in Chapter III. Assume that the results shown in
Figure 3.8 for & = 60° is sufficiently close to © = 53°10' so thet the
data is applicable. K , .

Letting
e =53° 10’
R = 10.0 inches
a = 8.0 inches
E = 465 x 103 _psi
e = -05 1b/in3

From Figure 3.5 assuming N = 400 results in 7 = 13 witho(,= 55°,
Substituting the values into equation 3.9 results in

5/2
% =2.17 x 10'8(3’I>
P

A comparison of the efficlency of the stiffened dome to that of a mono-
cogue dome was based upon equivalent weight. From the previous experimen-
tal monocoque dome result, it was reported that W = 10.2 for a failing
pressure of p, = b .45 psi. é
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z~.0259 he
b4
X%v .
)\ ~
bR
Rib Cross ol.
Rib Sectional hp b
NO. Area . R
1 .00821 .316 .026 48
2 .00692 .288 024 43
3 .00565 257 .022 38 |
L .004h1 .232 .019 33
5 .00328 219 .015 28
6 .00228 .163 .01h 23
T* .001L2 k2 .010 18
8% .00100 .100 .010 13
o% .00100 .100 .010 8
10% .00100 .100 .010 3

*Note - Limitation of theory and consideration of minimum gage
of plastic material available dictates design in this region.
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Substituting = 10.2 into the above equation results in p = 3.39 psi

¥
e
or
2 _ .3
By 1%1:2.5
Assuming that the developed optimum stiffening arrangement is realistic
and that the value of N = 400 is indicative of the rib area required to
prevent premature rib failure, the predicted efficiency of circumferen-
tially stiffened domes was expected to less than that of a monocoque
shell. Since a negative result is sometimes as good as a positive result,

an experimental test was conducted to substantiate the validity of the
theory. The dome thickness was calculated from the following relationships.

5/2
Pogy (e’te)

vhere Ay = Lk.12
Substituting the values into the above equation and solving for t gives
t = .0259 inches

The rib areas required for the design were calculated using the relation-
ships developed in Chepter III. The resulting geometry is depicted in
Table 5.5. .

Combined Meridional and Circumferentisl Stiffened Dome #1-MC
Meridional Dome #1-M with the addition of five equally space circumferential
stiffeners of the same rib cross sectional area wes tested to a failing
pressure of 1.53 psi. A comparison with a monocoque dome of the same
weight showed this pressure to 82% of the expected monocoque buckling pres-
sure. The primary mode of failure was in rib instability of the largest
circumferential stiffener. Failure of this rib resulted in a secondary
mode of panel instability. The geometry and feiling pressure is shown

in the proceeding table.

R d b t

No of P -
s Ribs sFail t

n‘q

ts _’i
%ﬁ 20 | 25 | o191 | 03a9 | €5 153 | .0401 82
pdbe |

)

Square-Grid Stiffened Dome - The Square -Grid stiffening arrange-
ment with an a/b = 4.78 was designed to & near optimum condition of effi-
ciency. The geometric proportions and failing pressure is shown in




the proceeding table.

~l
olol

R a . d b t I;,sFail

——

1 —1a —
p— : [d

7

SLXBEIR t

A’A’A’A‘A’A’A’A’. XXX $

+ﬁ=_l

h_.lL-__T

a

20 116 302 | .0287 | .0576 9.48 072 158

- Specimen - The geometry selected for test wes based upon the
analysis by Crawford and Schwartz {reference 23). Due to the constraints
imposed by fabrication and the available buckling pressure due to the
vacuum method of test, the design of the specimen will be off-optimum.
From the appropriate equations and figures in Reference 23 the selected
parameters are: .

N =2.05
b

— = 0.50
tS

a

This results in the off-optimum equation

o (E>3/s

E

Wi}

The optimum equation (without restraints) is given as
T, p)3/5
% . 1.8 ( E)
It may be seen that the off-optimum design is = 9% heavier than the
optimum design.
Performing the necessary celculation using the dame geometry having a

spherical radius of R = 20 inches and an a/b ratio = 4.78 at a limiting
pressure of p = 12 psi results in:

a =1.16
tg = .057k
» = .0287
a = .30
T = .0723

167



168

As was previously shown, the predicted buckling pressure for a
monocoque dome of the same geometry and weight may be expressed as

where the buckling coefficient C as determined from experiment is
C = 0,50, Substituting E = 465 x 103 and T = .0723 into the above
equation gives:

P =6,1Psi
n

The predicted buckling pressure ratio for the square grid stiffened
dome and the monocoque dome results in:

p
i;n' = lagi

Geodesic Stiffened Domes

Due to constructional limitations, the theoretical optimum shape
having a half-opening angle 6 = 60° was not modeled for the stiffened
configuration, Instead, a sphericeal cap with an a/b = 4,78 was used
to test the validity of this stiffening theory, This larger spherical
radius (R=20 in.) increased the grid pattern within tolersble fabri-
cation techniques., The first two geodesic (#1-G, #2-G) domes are
shown to have achieved pressures of 1,50 and 1,60 times the values
which would be obtained for the same weight of materiasl in monocogque
construction. The general instability coefficient assumed in the
design analysis of these domes was not achieved due to greater
deviation of the stiffened specimens from membrane conditions in the
prebuckled configuration., A redesign of the third specimen taking
this into cognizance resulted in a pressure 2,27 times the monocoque
pressure, The achieved pressure was within 1-172% of the redesign
predicted value. When the No. 1 Geodesic dome was first tested, the
resulting failing pressure was much less than predicted by theory.
Cadco No, 202 bodied cement used at the rib intersections had softened
the rib material enough to allow these rib intersections to act as
vertical hinges instead of uniformly elastie ribs. Therefore, small
1/2 inch diameter by 0.015 inch thick PVC disks were cemented with
"Eastman 910" cement at every rib intersection. This provided a more
rigid joint to carry the rib compression through the intersections.,
The buckling pressure on retesting of this dome had increased to a
more reasonable value,

On #2-G and #3-G domes 1/4 inch diemeter by .020 inch thick disks were
cemented with "Eastman 910" rather then "Cadco" No. 202, The chief
reason for using disks on these domes was to provide an adhesive sure
face to hold a portion of the cement at the edge of the rib inter-



Section opposite the shell, The Eastman 910 cement has a low
viscoelasticity and before setting up, would flow away from the area
vhere the disk was placed. The geometry and test results shown in
the proceeding table,

olo]

CONSTANT a = 8 IN. R h d b t - PsFail

-~

h< 20 157 230 ] 0191 | 0474 | 5386 0580 150
A
ts jl- 20 1.60 226 | 0239 | 0479 | 654 .0592 1.60

B b 1 20 125 205 | 0153 | 0296 | 3.96 .0387 227

Geodesic Dome #1«G - The specimen was sized using optimum
design considerations. Since this was the first specimen tested, the
classical buckling coefficient for monocoque domes was used for the
general instability coefficient (c0 = 1,225), The value of the
buckling coefficient by test was calculated to be ¢, = .696,

Specimen Design - The plastic model specimen geometry and
pressure was choosen as to give model sizes which are capsble of
being constructed and tested.

R = 20.0" E = 465000 psi
e = 2,00 P=9,8 psi
Thus
6 8 x 106
2x10® = L——7 = 21.05
0,465 x 10

From Tebles in Part II, one obtains the values:

a =0,0746, & =1L4.85, y =3,11, n = 0.672
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One sees that this design indicates a "classical weight ratio" of
67.2% for the weight of the stiffened dome vs. & monocoque dome,

The ratio of rib weight to skin weight is 3 , i.e.
3 x .07Th6 x 100% = 22,4%

Since the classical ¢, 1s used for general instability, while the
actual value will be somewhat smaller, the specimen should fail in
general instability and give an indication of the reduction factor
for c., -

(o]

t
R ?

P -6
'§'= -——O-‘. = 9'80 X 10 - _3
R~V T.225E7 \/1.225 <005 353 - 2:37Tx10

Solving the general instability equation for

ot
]

0000237 x 20 = 0.01\\114"

d= 6t =4,85 x 0,047k =0,230"

h= veRt = /2 x20 x 0.0474 = 1,38"
a= a— h = 1, 22"
/3

. _t_}}- - OQOhlh X 1.38 — "
b - [+ ] = 0007,46 X 0.230 = 000212

Although these calculated dimensions do not exactly correspond to
the measured dimensions little variation is expected in the pre-
dicted failing pressure,

Geodesic Dome #2-G ~ Attempts to machine sheets of polyvinyl
chloride to orbitrary thickness were unsuccessful due to extreme
deviations from flatness of the machined sheet. As a conseguence,
the choosen rib thickness for this specimen was obtained by measurement
of rolled sheet 0.0239 in, as supplied by the menufacturer, In this
case on off-optimum design for non-critical ribs is obtained by the
enalysis technique described in Chapter IV,
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obtained:

Specimen Design - From the Tables the following values are

.08 4,66 3.26 686 59.4

From the formula:

For ¢

E;ii = (%ﬁ)h = (-'-92-3-255_-52&5)h = 0.25k x 107
p = E% x 0,254 x 107"
= 7.4 and € = 2,0
p = ng x 0.25k x 107" = 0.234 x 107!
N

Since this is less than the value P = .365 x 10 for an optiﬁum design,
rib erippling will not be critical. .

For

E

wfct

4,65 x 10° psi.,

=4 5

0.234 x 107 x L,65 x 10

10,9 psi.

L
/ B 0.234 x 107' _ -3
c K V/l.ees T555 x 3.50 - 2+ x10

20 x 2.42 x 1073 = 0.048Y in,

8t = 4,66 x 0,0484 = 0,226 in,

€ Rt = 2 x 20 x 0,048% = 1,94

1.39 in, , a = h = 1.60 in.
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Calculation of Geodesic Stiffened Configuration No, 3 - Since
the general instability coefficients cT = 0. 348 and 0.377 obtained for
tgsts #1=G and #2-G lie considerably below the "classical" value
c = c°/2 = 0.,6125 the tables for a, §, v, n, p and B were reworked

assuming c°/2 = 0,4 These values are shown in the table in Part II,

Specimen Design -

a ) Y n §x10 8

.10 T7.03 5.09 «5T6 11.38 T2.02

Selecting the ribd thickness b = .0153 in. and substituting in the
previously developed formula:

- 3 L 2
2= =.(§_) = (O'ﬂ?o—’gﬁ'_o.@.) = 0.0925 x 107
2 . L]
For e, = T4, € = 2,0,
P = Iﬁi x 0.,0925 x 1074 = 8.67 x 1076 < 11.38 x 1076
- -6
t ./ B _ [8.61x10"° _ -3
R "Vecy ~VoBxs.09 1.46 x 120

t = 20 x 1.46 x 107 = 0,0292 in,

d& = &t =7.03 x 0.0292 = 0.205 in.
h2 = ¢ Rt =2 x 20 x 0.0292 = 1.170
h = 1,082 in., a=2= h = 1.25 in.
3
6

P = B8.6T7 x 100 x 0.,L465 x lO6 = 4,03 psi,
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Stiffened Domes - Thermal Gradient Tests

The objective of the thermal gredient test plan was to apply a known
temperature differential through the thickness of a geodesic and
square-grid stiffened dome and test to failure by a uniform external
pressure., This would assess the influence of thermal stresses upon
the critical buckling pressure.

The two stiffened domes selected for test were the #2-G (geodesic
dome) and the #1-SG (square~grid dome)., The table below shows the
recorded temperatures and their locations prior to failure.

Temp = °F Temp = °F

Loec.
#2-G #1=-SG
1 + 59.5 + 63.5
2 + 58.5 + 63,5
3 + 5k,5 + 63.5
4 + 54,5 + 58.0
5 + 45,0 + 58,0
6 + 58,0
7 + 43,5
8 + 45,5
9 + 45,5
10 + 46,0

Under the maximum thermal gradient of 14.5°F for the Geodesic dome,

the buckling pressure recorded was 8.29 psi. For the square stiffened
dome the maximum thermal gradient recorded was 17.5°F, and failure
ocgurred at a pressure of 10,83 psi. In both tests the applied thermal
gradient produced a higher buckling pressure than was previously
recorded under the room temperature condition, Since the back up
blocks for these tests were removed, the resulting large deformatioms
at failure caused demage to the domes., When the domes became unstable
and buckled, the material fractured and blew out leaving a hole, The
holes occurred in areas that had buckled in the previocus tests. The
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holes can be seen in Figure 5.25, The thermocouple locations are shown
schematically in Figure 5.26. The external pressure versus radial
deflection data Jjust prior to buckling, for the two domes are found in
Figure 5,28 and the location of the displacement transducers are
illustrated in Figure 5.27. There was & definite change in the
deflection mode fram the room temperature tests reported previously,

The buckling pressures previously recorded for the #2 Geodesic dome and
the #1 Square-Grid Stiffened dome for the rocm temperature condition
were 6,54 psi and 9.48 psi respectively. This corresponds with the
experimental buckling pressures of 8,29 pai and 10.83 psi with the
additional condition of a thermal gradient., This apparent increase in
the buckling pressure may be attributed to the difference between the
coefficient of thermal expansion and soak temperature between the shell
and the support ring which introduced a relieving tensile load in the
shell,

Metal Dome Testing

Fabrication of Dome

The gecmetric shape of the monocoque aluminum dome selected for test

was a sphericel cap with & half-opening angle 6 = 60° with a radius

R = 27.3 inches, The basic material selected for fabrication of the
spherically shaped dome was 2014-T6, in sheet size of 70 x T0 inches
with a thickness of 3/L inch. By a hot spinning process, the material
was formed over steel mandrels in four succéssive passes at temperatures
estimated to be between 500°F - 600°F, This hot forming process had an
annealing effect such that coupons cut from the formed dome material
had yleld properties much less than that of the initial 2014-T6 material,
The compressive and tensile stress strain curves in both the hoop and
meridional direction is shown in Figure 5.29.

The dome was not heat treated after forming because of the possible
detrimental effect of shape variation, While the dome was on the
mandrel, the dome was machined to the required overall thickness of
«200 inches, Measurements taken at random locations showed the toler-
ance to be within + ,002 of the desired thickness. It was estimated
that some of the residual stresses caused by the forming technique were
removed during this machining process. The layout of the geodesic
pattern was accomplished be dividing the pattern into five equal segments
as shown in the working drawing in Figure 5.30. A fiberglass layup was
formed on the concave surface of the metal dome and templates of both
odd and even patterns were scribed on the fiberglass surface. This
fiberglass liner was used to guide the hand router both in depth and

contour, (Figu;e 5.31)

Based upon the geometry of the stiffening pattern and the quantity of
only one dome, hand routing was selected as the fabrication method
instead of numerically controlled machining or chemicel milling which
necessitates leaving large corner radii. To prevent the dome specimen
from "popping out” into the router during machining, the dome was held
in a handling fixture that was vacuum chucked to the dome., Figure 5.36
shows the machining setup.
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FAILURE OF GEODESIC DOME (NO. 2-6) -

THERMAL GRADIENT TEST

THERMAL GRADIENT TEST
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FIGURE 5.26 THERMOCOUPLE LOCATION ON
SQUARE STIFFENED DOME (NO. 1-5G)
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#1-S SQUARE STIFFENED DOME

#2-G GEODESIC DOME
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FIGURE 5.27

LOCATION OF DISPLACEMENT TRANSDUCERS ON #1-S AND #2-G SQUARE AND GEODESIC
DOMES FOR COLD TEST
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Figure 5.28 - Radial Deflection at Buckling Pressure Thermal Gredient Tests
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As a result of machining difficulties encountered in the program to
maintain the committed close tolerances and schedule, accurate machining
wvas restricted to a circular area of spproximately 20 inches in diameter.
The remaining surface area was machined but not brought down to the
specified tolerances, This overstrength region served as a support for
the representative region.

Test Set-Ug

The aluminum dome was mounted in a heavy steel base ring 4 inches thick
with a 2 inch deep circuler trough mechined in the ring. The test
specimen was seated into this trough and then filled with Cero-bend
(low temperature melting alloy). This clamped boundary condition
duplicated the edge fixity arrangement used for the plastic dome
specimens, The base ring was then mounted on the pressure vessel
fixture that allowed a meximum clearance between the test dome and the
- fixture of approximately 2 inches st the apex., This volume was filled
with oil and the entrapped air was bled out. With the machined concave
surface of the dome in the exposed position, the entire assembly was
mounted on a supporting ground stand, This experimental arrangement

is shown in Figure 5,32,

Test Procedure

The pressurization of the dome was accomplished by applying pressure on
the convex surface of the dome slowly until a failure occurred. Pressure
was accurately monitored by two pressure transducers that were auto-
graphically recorded with the other instrumentation on a continuous
oscillograph recording. As a visual aid in estimating pressure, a
calibrated hydraulic gage was mounted on the dome base ring. Single
strain gages were located at T points within the predicted failure
region on the stiffening ribs on the concave surface, Rosette strain
gages were applied to a typical panel back to back so that bending
effects could be recorded. Six deflectometers were bonded normal to
the concave surface of the rib Junctures to record the shapes of the
surface under the applied pressure. The location of the instrumenta-
tion is shown in Figure 5,33,

Specimen Design

The rib dimensions of the small scale metal test dome is considerably
off-optimum due to limitations of rib thickness and allowable yield
stress in the metal. The method of fabrication requires two aslternate
templates to guide the routing tool which removes the material between
the ribs. Template tolerances of 1/6L" result in ribs not thinner than
1/10" in width for reasonable dimensional control.

Larger domes fabricated from sectors stretch formed, welded and program

machined could be made closer to optimum dimensions with improved
material properties. Efficiencies of such domes would more closely
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approach ideal values,

With a choice of rib width, b = 0,10" and a B value of 15.30 corre-
sponding to a = 0,31 and assuming that the general instability buckling
coefficient is that obtained by the geodesic plastic domes (c° = ,80),
one obtains from the tables in part II for € = 2,0

0.31 L, 43 6.06 0.782 15,30

b e o b - 3
35 = (25225:3)" = 0,0990 x 207" = -
. 02
P - I G N
P x 0,0990 x 10™" = 0,916 x 10
= -6 6 _
P = 9,16 x 10 x 10.3 x 10" = 94,3 psi,

6 6

t . B . .16 x 10° . -
R c Y 0.8 x 6.06 1.375 x 10

t = 27.3x 1.375 x 1073 = 0,0375 in.

d = & = 4,43 x 0,0375 = 0,166 in.

b2 = e Rt = 2 x 27.3 x 0.0375 = 2.045
2

h = 1,3 in, , a =5 h = 1,65 in,
3

The predicted buckling stress in the plate is:

= 1 211 = —1—— M = 3
p- T+a 2%t T.31 2 x 0.0375 26,200 psi.
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Test Results

Failure of the dome occurred within the predicted region at a pressure
of 62.2 psi. The failed dome shown in Figure 5.34, depicts a buckle
that is approximately 12 inches in diameter and 4 to 5 inches in depth.
Upon inversion of the dome for inspection purposes, a series of dimples
had formed between many of the equilateral triangles at the failing
pressure (Figure 5.34). The instrumentation data recorded is reduced
end is shown for pressures of 20.6, L0.6, and 62.2 psi (Jjust prior to
failure) in the table below.

Strain Gege Readings Stress - Psi

Max, Norm.
Outer | Inner
P S-1 S-2 S=3 S-4 S=5 S-14 S-17

20.6 w60} s5170{ uogo| 3800f 3880 | 4875 Lkos

40.6 9160 | 10220 | 7700} T6TO| TSLO| 9035 | 85k

62.2 15660 | 16360 | 12150 | 11680 § 10550 | 13850 | 11950

Deflection Readings - Inches

P D-21 | D-22 | D-23 |D-2k |D-25 | D=26

20.6 .013 013 .013 ,013 .013 .013

Lo.6 «025 025 024 §,025 .026 025

62.2 Oh2 Ob1l | .038 | .okl | .0L3 .0kl

The buckling coefficient for this dome at the failing pressure was
calculated to be ¢g = 0.52., This was much less than the classical
buckling coefficient of ¢, = 1.225, and less than the results obtained
for the plastic dome specimens where ¢y = .70. It is suspected that
the lower buckling coefficient is attributed to the high stresses
developed in the plate prior to failure as shown in the table of the
strain gage readings, A comparison of the maximum recorded stresses,
to that of Figure 5.29, indicates that failure occurred very close to
the proportionel 1limit of the material, thus introducing a plastic
reduction factor in the stebility equation. It is also suspected that
the residual stresses inherently built into the dome during fabrication
coupled with the high induced pressure stresses, combine to produce
higher plastic stresses than indicated in the recorded stresses,
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FIGURE 5

ALUMINUM GEODESIC DOME
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